# Ex 3.2, 11 - Chapter 3 Class 12 Matrices

Last updated at April 16, 2024 by Teachoo

Ex 3.2

Ex 3.2, 1

Ex 3.2, 2 (i)

Ex 3.2, 2 (ii) Important

Ex 3.2, 2 (iii)

Ex 3.2, 2 (iv)

Ex 3.2, 3 (i)

Ex 3.2, 3 (ii) Important

Ex 3.2, 3 (iii)

Ex 3.2, 3 (iv) Important

Ex 3.2, 3 (v)

Ex 3.2, 3 (vi) Important

Ex 3.2, 4

Ex 3.2, 5

Ex 3.2, 6

Ex 3.2, 7 (i)

Ex 3.2, 7 (ii) Important

Ex 3.2, 8

Ex 3.2, 9

Ex 3.2, 10

Ex 3.2, 11 You are here

Ex 3.2, 12 Important

Ex 3.2, 13 Important

Ex 3.2, 14

Ex 3.2, 15

Ex 3.2, 16 Important

Ex 3.2, 17 Important

Ex 3.2, 18

Ex 3.2, 19 Important

Ex 3.2, 20 Important

Ex 3.2, 21 (MCQ) Important

Ex 3.2, 22 (MCQ) Important

Chapter 3 Class 12 Matrices

Serial order wise

Last updated at April 16, 2024 by Teachoo

Ex 3.2, 11 If x [■8(2@3)] + y [■8(−1@1)] = [■8(10@5)] , find values of x and y. x [■8(2@3)] + y [■8(−1@1)] = [■8(10@5)] [■8(2𝑥@3𝑥)] + [■8(−𝑦@𝑦)] = [■8(10@5)] [■8(𝟐𝒙−𝒚@𝟑𝒙+𝒚)] = [■8(𝟏𝟎@𝟓)] Since the matrices are equal. corresponding elements are equal 2x − y = 10 3x + y = 5 Solving equations Adding (1) & (2) (2x – y) + (3x + y) = 10 + 5 2x – y + 3x + y = 15 2x + 3x – y + y = 15 5x + 0 = 15 x = 15/5 x = 3 Putting value of x in (1) 2x – y = 10 2(3) – y = 10 6 – y = 10 –y = 10 – 6 –y = 4 y = –4 Hence, x = 3 & y = –4