Ex 3.2, 11 - Chapter 3 Class 12 Matrices
Last updated at April 16, 2024 by Teachoo
Ex 3.2
Ex 3.2, 2 (i)
Ex 3.2, 2 (ii) Important
Ex 3.2, 2 (iii)
Ex 3.2, 2 (iv)
Ex 3.2, 3 (i)
Ex 3.2, 3 (ii) Important
Ex 3.2, 3 (iii)
Ex 3.2, 3 (iv) Important
Ex 3.2, 3 (v)
Ex 3.2, 3 (vi) Important
Ex 3.2, 4
Ex 3.2, 5
Ex 3.2, 6
Ex 3.2, 7 (i)
Ex 3.2, 7 (ii) Important
Ex 3.2, 8
Ex 3.2, 9
Ex 3.2, 10
Ex 3.2, 11 You are here
Ex 3.2, 12 Important
Ex 3.2, 13 Important
Ex 3.2, 14
Ex 3.2, 15
Ex 3.2, 16 Important
Ex 3.2, 17 Important
Ex 3.2, 18
Ex 3.2, 19 Important
Ex 3.2, 20 Important
Ex 3.2, 21 (MCQ) Important
Ex 3.2, 22 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 3.2, 11 If x [■8(2@3)] + y [■8(−1@1)] = [■8(10@5)] , find values of x and y. x [■8(2@3)] + y [■8(−1@1)] = [■8(10@5)] [■8(2𝑥@3𝑥)] + [■8(−𝑦@𝑦)] = [■8(10@5)] [■8(𝟐𝒙−𝒚@𝟑𝒙+𝒚)] = [■8(𝟏𝟎@𝟓)] Since the matrices are equal. corresponding elements are equal 2x − y = 10 3x + y = 5 Solving equations Adding (1) & (2) (2x – y) + (3x + y) = 10 + 5 2x – y + 3x + y = 15 2x + 3x – y + y = 15 5x + 0 = 15 x = 15/5 x = 3 Putting value of x in (1) 2x – y = 10 2(3) – y = 10 6 – y = 10 –y = 10 – 6 –y = 4 y = –4 Hence, x = 3 & y = –4