Find : ∫(2x^2+3)/(x^2 (x^2+9) ) dx;x≠0

This question is similar to Ex 7.5, 18 Chapter 7 Class 12

[Class 12] Find ∫ (2x^2 + 3) / x^2 (x^2 + 9) dx - Teachoo Maths - CBSE Class 12 Sample Paper for 2024 Boards

part 2 - Question 26 - CBSE Class 12 Sample Paper for 2024 Boards - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards - Class 12
part 3 - Question 26 - CBSE Class 12 Sample Paper for 2024 Boards - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards - Class 12
part 4 - Question 26 - CBSE Class 12 Sample Paper for 2024 Boards - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards - Class 12

 

Share on WhatsApp

Transcript

(2𝑥^2 + 3)/(𝑥^2 (𝑥^2 + 9) ) Let t = 𝒙^𝟐 = (2𝑡 + 3)/𝑡(𝑡 + 9) We can write (2𝑡 + 3)/𝑡(𝑡 + 9) = 𝑨/𝒕 + 𝑩/((𝒕 + 𝟗) ) (2𝑡 + 3)/𝑡(𝑡 + 9) = (𝐴(𝑡 + 9) +𝐵𝑡)/(𝑡(𝑡 + 9) ) Cancelling denominator 𝟐𝒕+𝟑 = 𝑨(𝒕+𝟗)+𝑩𝒕 Putting t = −𝟗 in (1) 2(−9)+3 = 𝐴(−9+9)+𝐵(−9) −18+3 = 𝐴×0+𝐵(−9) −15 = 0+𝐵(−9) −15 = −9𝐵 B = 15/9 𝑩 = 𝟓/𝟑 Putting t = 𝟎 in (1) 2(0)+3 = 𝐴(0+9)+𝐵(0) 3 = 9𝐴+0 A = 9/3 A = 𝟏/𝟑 Hence we can write (2𝑡 + 3)/𝑡(𝑡 + 9) = (1/3)/𝑡 + (5/3)/((𝑡 + 9 ) ) (2𝑡 + 3)/𝑡(𝑡 + 9) = 1/3𝑡 + 5/(3(𝑡 + 9)) Putting back t = 𝒙^𝟐 (𝟐𝒙^𝟐+ 𝟑)/(𝒙^𝟐 (𝒙^𝟐 + 𝟗) ) = 𝟏/(𝟑𝒙^𝟐 ) + 𝟓/(𝟑(𝒙^(𝟐 )+ 𝟗)) Therefore, ∫1▒(2𝑥^2 + 3)/(𝑥^2 (𝑥^2 +9)) 𝑑𝑥 = ∫1▒〖1/(3𝑥^2 ) 𝑑𝑥"+ " ∫1▒5/(3(𝑥^2+ 9))〗 𝑑𝑥 = 1/3 ∫1▒〖1/𝑥^2 𝑑𝑥" + " 5/3 ∫1▒1/((𝑥^2+ 9))〗 𝑑𝑥 = 𝟏/𝟑 ∫1▒〖𝟏/𝒙^𝟐 𝒅𝒙" + " 𝟓/𝟑 ∫1▒𝟏/((𝒙^𝟐+ 〖(𝟑)〗^𝟐))〗 𝒅𝒙 = 1/3 × (−𝟏)/𝒙 + 5/3 × 𝟏/𝟑 〖𝒕𝒂𝒏〗^(−𝟏)⁡〖 𝒙/𝟑〗 + C = (−𝟏)/𝟑𝒙 + 𝟓/𝟗 〖𝒕𝒂𝒏〗^(−𝟏) (𝒙/𝟑) + C

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 15 years. He provides courses for Maths, Science and Computer Science at Teachoo