CBSE Class 12 Sample Paper for 2024 Boards

Class 12
Solutions of Sample Papers and Past Year Papers - for Class 12 Boards

## (c) (AB)^(-1)=B^(-1) A^(-1)                       (d) (A+B)^(-1)=B^(-1)+A^(-1)

The rest of the post is locked. Join Teachoo Black to see the full post.

### Transcript

Letβs dicuss each option one by one Option (a) - |γπ¨π©γ^(βπ) |=(|π¨|)/(|π©|) Solving LHS |γπ΄π΅γ^(β1) |=|π΄||π΅^(β1) | = |π΄| 1/(|π΅|) = (|π΄|)/(|π΅|) So, option (a) is correct Option (b) - |(π¨π©)^(βπ) |=π/(|π¨||π©|) Solving L.H.S |γ(π΄π΅)γ^(β1) | = | π΅^(β1) π΄^(β1)| = | π©^(βπ) γ| |π¨γ^(βπ)| = 1/(|π΅|) 1/(|π΄|) = π/(|π¨||π©|) = R.H.S So, option (b) is correct Option (c) - (π΄π΅)^(β1)=π΅^(β1) π΄^(β1) This is a correct property. So, option (c) is correct Option (d) - (π¨+π©)^(βπ)=π©^(βπ)+π¨^(βπ) Letβs check this with the help of an example Letβs consider A = [β (1&3@0&2)] and B = [β (2&1@1&2)] Since L.H.L β  R.H.L Thus, (π΄+π΅)^(β1)β π΅^(β1)+π΄^(β1) β΄ So, option (d) is incorrect So, the correct answer is (d)