If (a+bx)e^(y/x)=x then prove that x (d^2 y)/(dx^2 )=(a/(a+bx))^2
The rest of the post is locked. Join Teachoo Black to see the full post.
CBSE Class 12 Sample Paper for 2024 Boards
CBSE Class 12 Sample Paper for 2024 Boards
Last updated at Dec. 13, 2024 by Teachoo
The rest of the post is locked. Join Teachoo Black to see the full post.
Transcript
Given (𝑎+𝑏𝑥)𝑒^(𝑦/𝑥)=𝑥 𝒆^(𝒚/𝒙) = 𝒙/((𝒂 + 𝒃𝒙)) Taking log on both sides log 𝑒^(𝑦/𝑥) = log 𝑥/((𝑎 + 𝑏𝑥)) 𝒚/𝒙 𝐥𝐨𝐠 𝐞 = log x – log (a + bx) 𝑦/𝑥 × 1= log x – log (a + bx) 𝒚/𝒙 = log x – log (a + bx) Differentiating w.r.t x 𝑑(𝑦/𝑥)/𝑑𝑥 = 1/𝑥 – 1/(𝑎 + 𝑏𝑥) × 𝑏 (𝒅𝒚/𝒅𝒙 𝐱 − 𝒚)/𝒙^𝟐 = 1/𝑥 – 𝑏/(𝑎 + 𝑏𝑥) (𝑦^′ x−y)/𝑥^2 = (𝑎 + 𝑏𝑥 − 𝑏𝑥)/(𝑥(𝑎 + 𝑏𝑥)) 𝑦^′ x−y = 〖𝑎𝑥〗^2/(𝑥(𝑎+𝑏𝑥)) 𝒚^′ 𝐱−𝐲 = 𝒂𝒙/(𝒂+𝒃𝒙) Differentiating again w.r.t x (𝐝(𝒚^′ )/𝒅𝒙 𝒙+𝒚^′ 𝒅𝒙/𝒅𝒙) − 𝒅𝒚/𝒅𝒙 = (𝒂( 𝒂 + 𝒃𝒙) − 𝒃(𝒂𝒙))/〖(𝒂 + 𝒃𝒙)〗^𝟐 𝑦^′′ 𝑥+𝑦^′−𝑦^′= (𝑎^2 + 𝑏𝑎𝑥 − 𝑏𝑎𝑥)/〖(𝑎 + 𝑏𝑥)〗^2 𝑦^′′ 𝑥 = 𝑎^2/〖(𝑎 + 𝑏𝑥)〗^2 𝒙 (𝒅^𝟐 𝒚)/(𝒅𝒙^𝟐 )=(𝒂/(𝒂 + 𝒃𝒙))^𝟐 Hence proved