Solve the differential equation: ye^(x/y) dx=(xe^(x/y)+y^2 )dy,(y≠0)
The rest of the post is locked. Join Teachoo Black to see the full post.
CBSE Class 12 Sample Paper for 2024 Boards
CBSE Class 12 Sample Paper for 2024 Boards
Last updated at Dec. 13, 2024 by Teachoo
The rest of the post is locked. Join Teachoo Black to see the full post.
Transcript
y𝑒^(𝑥/𝑦) 𝑑𝑥=(𝑥𝑒^(𝑥/𝑦)+𝑦^2 )𝑑𝑦 Step 1: Finding 𝑑𝑥/𝑑𝑦 y𝑒^(𝑥/𝑦) 𝑑𝑥=(𝑥𝑒^(𝑥/𝑦)+𝑦^2 )𝑑𝑦 𝒅𝒙/𝒅𝒚=(𝒙𝒆^(𝒙/𝒚) + 𝒚^𝟐)/(𝒚𝒆^(𝒙/𝒚) ) Step 2 : Solving 𝑑𝑥/𝑑𝑦 by Putting 𝑥=𝑣𝑦 𝑑𝑥/𝑑𝑦=(𝑥𝑒^(𝑥/𝑦) + 𝑦^2)/(𝑦𝑒^(𝑥/𝑦) ) Put 𝒙=𝒗𝒚 Diff. w.r.t. 𝑦 𝑑𝑥/𝑑𝑦=𝑑/𝑑𝑦 (𝑣𝑦) 𝑑𝑥/𝑑𝑦=𝑦 . 𝑑𝑣/𝑑𝑦+𝑣 𝑑𝑦/𝑑𝑦 𝒅𝒙/𝒅𝒚=𝒚 . 𝒅𝒗/𝒅𝒚+𝒗 Putting values of 𝑑𝑥/𝑑𝑦 and x in (1) 𝑑𝑥/𝑑𝑦=(𝑥𝑒^(𝑥/𝑦)+𝑦^2)/(𝑦𝑒^(𝑥/𝑦) ) 𝒗+𝒚 𝒅𝒗/𝒅𝒚=(𝒗𝒚𝒆^𝒗+𝑦^2)/(𝒚𝒆^𝒗 ) 𝑣+𝑦 𝑑𝑣/𝑑𝑦=(𝑣〖𝑦𝑒〗^𝑣)/(𝑦𝑒^𝑣 ) + 𝑦^2/(𝑦𝑒^𝑣 ) v+𝑦 𝑑𝑣/𝑑𝑦=𝑣+ 𝑦/𝑒^𝑣 𝑦 𝑑𝑣/𝑑𝑦=𝑦/𝑒^𝑣 𝑑𝑣/𝑑𝑦=1/〖 𝑒〗^𝑣 〖 𝒆〗^𝒗 𝒅𝒗=𝒅𝒚 Integrating Both Sides ∫1▒〖〖 𝒆〗^𝒗 𝑑𝑣〗= ∫1▒𝑑𝑦 〖 𝒆〗^𝒗=𝒚+𝒄 Putting back 𝑣=𝑥/𝑦 𝒆^(𝒙/𝒚)=𝒚+𝒄