Check sibling questions

If f(x)=1/(4x^2  + 2x + 1);x∈R, then find the maximum value of f(x).

Slide4.JPG

Slide5.JPG
Slide6.JPG Slide7.JPG Slide8.JPG

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

f(𝑥)=1/(4𝑥^2 + 2𝑥 + 1) Finding f’(𝒙) f’(𝑥)= ((1)^′ " " (4𝑥^2 + 2𝑥 + 1)" − " (〖4𝑥^2 + 2𝑥 + 1)〗^′ (1))/((〖4𝑥^2 + 2𝑥 + 1)〗^2 ) f’(𝑥)= (0 (4𝑥^2 + 2𝑥 + 1)" − " (8𝑥 + 2)(1))/((〖4𝑥^2 + 2𝑥 + 1)〗^2 ) f’(𝑥)= ("−" (8𝑥 + 2) )/((〖4𝑥^2 + 2𝑥 + 1)〗^2 ) Putting f’(𝒙)=𝟎 ("−" (8𝑥 + 2) )/((〖4𝑥^2 + 2𝑥 + 1)〗^2 ) = 0 -(8x + 2) = 0 8x + 2 = 0 8x = -2 −(8x + 2) = 0 8x + 2 = 0 8x = −2 x = (−2)/8 x = (−𝟏)/𝟒 Finding f’’(𝒙) f’(𝑥)=("−" (8𝑥 + 2) )/((〖4𝑥^2 + 2𝑥 + 1)〗^2 ) " " Differentiating again w.r.t x f’’(x) =−((8𝑥 + 2)^′ (〖4𝑥^2 + 2𝑥 + 1)〗^2−((〖4𝑥^2+2𝑥+1)〗^2 )^′ (8𝑥 + 2))/(((〖4𝑥^2 + 2𝑥 + 1)〗^2 )^2 ) f’’(x) =−(8(〖4𝑥^2 + 2𝑥 + 1)〗^2 − 2(4𝑥^2 + 2𝑥 + 1)(8𝑥 + 2)(8𝑥 + 2))/(4𝑥^2 + 2𝑥 + 1)^4 f’’(x) =−(8(〖4𝑥^2 + 2𝑥 + 1)〗^2 − 2(4𝑥^2 + 2𝑥 + 1)(8𝑥 + 2)(8𝑥 + 2))/(4𝑥^2 + 2𝑥 + 1)^4 f’’(x) =−(8(〖4𝑥^2 + 2𝑥 + 1)〗^2 − 2(4𝑥^2 + 2𝑥 + 1) (8𝑥 + 2)^2)/(4𝑥^2 + 2𝑥 + 1)^4 f’’ (−𝟏/𝟒) = −(8(〖4(−1/4)^2+ 2(−1/4) + 1)〗^2 − 2(4(−1/4)^2+ 2(−1/4)+ 1) (8(−1/4)+ 2)^2)/(4(−1/4)^2+ 2(−1/4)+ 1)^4 f’’ (−𝟏/𝟒) = −(8(〖4(−1/4)^2+ 2(−1/4) + 1)〗^2 − 2(4(−1/4)^2+ 2(−1/4)+ 1) (−2 + 2)^2)/(4(−1/4)^2+ 2(−1/4)+ 1)^4 f’’ (−𝟏/𝟒) = −(8(3/4)^2−0)/(3/4)^4 = −8/(3/4)^2 f’’ (−𝟏/𝟒) < 0 Since f’’ (−𝟏/𝟒) < 0 , 𝑥 = −𝟏/𝟒 is point of local maxima Putting 𝑥 = −𝟏/𝟒 , we can calculate maximum value f(𝑥) =1/(4𝑥^2+2𝑥+1) f(−𝟏/𝟒)=1/(4(−1/4)^2+ 2(−1/4)+ 1) =1/(4(1/16)+ 2(−1/4)+ 1) =1/(1/4 − 2/4+ 1) = 4/(1 −2+ 4) = 𝟒/𝟑

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.