The smallest value of the polynomial x 3 – 18x 2 + 96x in [0, 9] is

(A)126                      (B) 0

(C) 135                    (D) 160

 

This question is similar to Ex 6.5, 7 - Chapter 6 Class 12 - Application of Derivatives

MCQ - The smallest value of polynomial x3 – 18x2 + 96x in [0, 9] is - NCERT Exemplar - MCQs

part 2 - Question 11 - NCERT Exemplar - MCQs - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 3 - Question 11 - NCERT Exemplar - MCQs - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 4 - Question 11 - NCERT Exemplar - MCQs - Serial order wise - Chapter 6 Class 12 Application of Derivatives

Share on WhatsApp

Transcript

Question 11 The smallest value of the polynomial x3 – 18x2 + 96x in [0, 9] is 126 (B) 0 (C) 135 (D) 160 𝒇(𝑥)=𝑥^3−18𝑥^2+96𝑥 Finding 𝒇’(x) 𝒇′(𝒙)=〖3𝑥〗^2−36𝑥+96 𝑓′(𝑥)=𝟑(𝒙^𝟐−𝟏𝟐𝒙+𝟑𝟐) Putting 𝒇’(𝒙)=𝟎 3(𝑥^2−12𝑥+32)=0 𝑥^2−12𝑥+32 = 0 𝑥^2−8𝑥−4𝑥+32=0 𝑥(𝑥−8)−4(𝑥−8)=0 (𝑥−4)(𝑥−8)=0 So, 𝒙=𝟒, 𝟖 Since, 𝒙 ∈ [𝟎 , 𝟗] Hence , calculating 𝒇(𝒙) at 𝒙=𝟎 , 𝟒 , 𝟖 , 𝟗 𝒇(𝟒) =(4)^3−18(4)^2+96(4) = 64 – 18 × 16 + 96 × 4 = 160 𝑓(8) =(8)^3−18(8)^2+96(8) = 512 – 18 × 64 + 768 =128 𝒇(𝟗) =(9)^3−18(9)^2+96(9) = 729 – 18 × 81 + 864 =135 Hence, Minimum value of 𝑓(𝑥) is 0 at 𝒙 = 0 So, the correct answer is (B)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo