## The equation of the normal to the curve y = sin x at (0, 0) is:

## (A)x = 0 (B) y = 0

## (C) x + y = 0 (D) x – y = 0

This question is similar to

Ex 6.3, 14 (i) - Chapter 6 Class 12- Application of Derivatives

NCERT Exemplar - MCQs

Question 1
Important

Question 2 Important

Question 3 Important

Question 4 Important You are here

Question 5 Important

Question 6

Question 7 Important

Question 8 Important

Question 9 Important

Question 10

Question 11 Important

Question 12 Important

Question 13

Question 14

Question 15 Important

Question 16 Important

Question 17 Important

Question 1 Important Deleted for CBSE Board 2025 Exams

Question 2 Deleted for CBSE Board 2025 Exams

Question 3 Important Deleted for CBSE Board 2025 Exams

Question 4 Deleted for CBSE Board 2025 Exams You are here

Question 5 Deleted for CBSE Board 2025 Exams

Question 6 Deleted for CBSE Board 2025 Exams

Question 7 Important Deleted for CBSE Board 2025 Exams

Question 8 Deleted for CBSE Board 2025 Exams

Question 9 Important Deleted for CBSE Board 2025 Exams

Question 10 Important Deleted for CBSE Board 2025 Exams

Question 11 Deleted for CBSE Board 2025 Exams

Question 12 Deleted for CBSE Board 2025 Exams

Question 13 Deleted for CBSE Board 2025 Exams

Chapter 6 Class 12 Application of Derivatives

Serial order wise

Last updated at April 16, 2024 by Teachoo

This question is similar to

Ex 6.3, 14 (i) - Chapter 6 Class 12- Application of Derivatives

Question 4 The equation of the normal to the curve y = sin x at (0, 0) is: x = 0 (B) y = 0 (C) x + y = 0 (D) x β y = 0 π¦=sinβ‘π₯ Since Slope of normal =(β1)/(ππ¦/ππ₯) Differentiating π¦ w.r.t. π₯ ππ¦/ππ₯=ππ¨π¬β‘π Since given point is (0, 0) Putting π=π in (1) π π/π π =cosβ‘0 ππ¦/ππ₯=π Hence, Slope of normal =(β1)/(ππ¦/ππ₯) =(β1)/1 =βπ Finding equation of normal Equation of line at (π₯1 , π¦1) & having Slope m is π¦βπ¦1=π(π₯βπ₯1) β΄ Equation of Normal at (0, 0) & Slope -1 is (πβπ)=βπ(πβπ) π¦=β1(π₯) π¦=βπ₯ π+π=π Hence, equation of normal is π+π=π So, the correct answer is (C)