The slope of tangent to the curve x = t 2 + 3t – 8, y = 2t 2 – 2t – 5 at the point (2, –1) is:
(A) 22/7 (B) 6/7
(C) − 6/7 (D) −6
This question is exactly same Misc 20 MCQ - Chapter 6 Class 12 - Application of Derivatives
NCERT Exemplar - MCQs
Question 2 Important
Question 3 Important
Question 4 Important
Question 5 Important
Question 6
Question 7 Important
Question 8 Important
Question 9 Important
Question 10
Question 11 Important
Question 12 Important
Question 13 You are here
Question 14
Question 15 Important
Question 16 Important
Question 17 Important
Question 1 Important Deleted for CBSE Board 2025 Exams
Question 2 Deleted for CBSE Board 2025 Exams
Question 3 Important Deleted for CBSE Board 2025 Exams
Question 4 Deleted for CBSE Board 2025 Exams
Question 5 Deleted for CBSE Board 2025 Exams
Question 6 Deleted for CBSE Board 2025 Exams
Question 7 Important Deleted for CBSE Board 2025 Exams
Question 8 Deleted for CBSE Board 2025 Exams
Question 9 Important Deleted for CBSE Board 2025 Exams
Question 10 Important Deleted for CBSE Board 2025 Exams
Question 11 Deleted for CBSE Board 2025 Exams
Question 12 Deleted for CBSE Board 2025 Exams
Question 13 Deleted for CBSE Board 2025 Exams You are here
Last updated at April 16, 2024 by Teachoo
This question is exactly same Misc 20 MCQ - Chapter 6 Class 12 - Application of Derivatives
Question 13 The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is: (A) 22/7 (B) 6/7 (C) − 6/7 (D) −6 Finding Slope of tangent 𝒅𝒚/𝒅𝒙 . 𝒅𝒚/𝒅𝒙= (𝒅𝒚/𝒅𝒕)/(𝒅𝒙/𝒅𝒕) 𝒙 = t2 + 3t – 8 Differentiating w.r.t t 𝒅𝒙/𝒅𝒕= (𝑑(𝑡^2 + 3𝑡 −8))/𝑑𝑡 𝑑𝑥/𝑑𝑡 = 2t + 3 𝒚 = 2t2 − 2t − 5 Differentiating w.r.t t 𝒅𝒚/𝒅𝒕= (𝑑 (2𝑡2 − 2𝑡 − 5))/𝑑𝑡 𝑑𝑦/𝑑𝑡= 4t − 2 Now, 𝑑𝑦/𝑑𝑥= (𝑑𝑦∕𝑑𝑡)/(𝑑𝑥∕𝑑𝑡) 𝒅𝒚/𝒅𝒙= (𝟒𝒕 − 𝟐)/(𝟐𝒕 + 𝟑) ∴ Slope of Tangent = (4𝑡 − 2)/(2𝑡 + 3) Now, we need to find value of Slope at (2, –1) But we need to find value of t first To find value of t, We put 𝒙 = 2 & 𝒚 = –1 in the curve For x x = t2 + 3t – 8 2 = t2 + 3t − 8 t2 + 3t – 8 – 2 =0 t2 + 3t − 10 = 0 t2 + 5t – 2t − 10 = 0 t (t + 5) – 2 (t − 5) = 0 (t − 2) (t + 5) = 0 So, t = 2 & t = −5 For y y = 2t2 – 2t – 5 –1 = 2t2 – 2t – 5 2t2 – 2t – 5 + 1 = 0 2t2 – 2t – 4 = 0 2(t2 – t – 2 ) = 0 t2 – t – 2 = 0 t2 – 2t + t – 2 = 0 t (t − 2) + 1(t − 2) = 0 (t + 1) (t – 2) = 0 So, t = −1 & t = 2 Since t = 2 is common in both parts So, we will calculate Slope of Tangent at t = 2 Finding Slope of Tangent 𝒅𝒚/𝒅𝒙= (4𝑡 −2)/(2𝑡 + 3) = (4 (2) − 2)/(2 (2) + 3) = (8 − 2)/(4 +3) = 𝟔/𝟕 Hence, the correct answer is (B)