The equation of normal to the curve 3x 2 – y 2 = 8 which is parallel to the line x + 3y = 8 is
(A) 3x – y = 8 (B) 3x + y + 8 = 0
(C) x + 3y ± 8 = 0 (D) x + 3y = 0




Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
NCERT Exemplar - MCQs
Question 2 Important
Question 3 Important
Question 4 Important
Question 5 Important
Question 6
Question 7 Important You are here
Question 8 Important
Question 9 Important
Question 10
Question 11 Important
Question 12 Important
Question 13
Question 14
Question 15 Important
Question 16 Important
Question 17 Important
Question 1 Important Deleted for CBSE Board 2024 Exams
Question 2 Deleted for CBSE Board 2024 Exams
Question 3 Important Deleted for CBSE Board 2024 Exams
Question 4 Deleted for CBSE Board 2024 Exams
Question 5 Deleted for CBSE Board 2024 Exams
Question 6 Deleted for CBSE Board 2024 Exams
Question 7 Important Deleted for CBSE Board 2024 Exams You are here
Question 8 Deleted for CBSE Board 2024 Exams
Question 9 Important Deleted for CBSE Board 2024 Exams
Question 10 Important Deleted for CBSE Board 2024 Exams
Question 11 Deleted for CBSE Board 2024 Exams
Question 12 Deleted for CBSE Board 2024 Exams
Question 13 Deleted for CBSE Board 2024 Exams
Last updated at May 29, 2023 by Teachoo
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Question 7 The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is (A) 3x – y = 8 (B) 3x + y + 8 = 0 (C) x + 3y ± 8 = 0 (D) x + 3y = 0 Since, the normal to the curve is parallel to the line 𝑥+3𝑦=8 ∴ Slope of normal = Slope of line So, finding slope of normal and slope of line Finding slope of normal "3" 𝑥"2 –" 𝑦"2 = 8" Differentiating w.r.t. x 6𝑥 − 2𝑦 𝑑𝑦/𝑑𝑥 = 0 2𝑦 𝑑𝑦/𝑑𝑥 = 6𝑥 𝑑𝑦/𝑑𝑥 =(6𝑥 )/2𝑦 𝑑𝑦/𝑑𝑥 =3𝑥/𝑦 Slope of normal =(−1)/(𝑑𝑦/𝑑𝑥) =(−1)/(3𝑥/𝑦) =(−𝒚)/𝟑𝒙 Finding slope of line 𝑥+3𝑦=8 Differentiating w.r.t. x 1+3 𝑑𝑦/𝑑𝑥 = 0 𝑑𝑦/𝑑𝑥 = (−1)/3 Slope of line =𝑑𝑦/𝑑𝑥 =(−𝟏)/𝟑 ∴ Equating (1) & (2) (−𝒚)/𝟑𝒙 = (−𝟏)/𝟑 −3𝑦=−3𝑥 𝒚=𝒙 Now, to find equation of normal, we need a point So, Putting 𝒚=𝒙 in the curve 3𝑦^2−𝑥^2=8 3𝑥^2−𝑥^2=8 2𝑥^2 = 8 𝑥^2 = 8/2 𝑥^2 = 4 𝒙=±𝟐 For y-coordinates, putting value of 𝑥 in y=𝑥 Finding equation of normal Equation of line at (𝑥_1, 𝑦_1) & having slope m is (𝑦−𝑦_1 ) = m (𝑥−𝑥_1 ) For 𝒙 = 2 𝑦=𝑥 𝑦=2 So, the point is (2, 2) For 𝒙 = −2 𝑦=𝑥 𝑦=−2 So, the point is (−2, −2) Equation of normal at (2, 2) & Slope (−𝟏)/𝟑 (𝑦−2) = (−1)/3 (𝑥−2) 3 (𝑦−2) = −1 (𝑥−2) 3𝑦−6=−𝑥+2 3𝑦+𝑥=6+2 3𝑦+𝑥=8 𝟑𝒚+𝒙−𝟖=𝟎 Equation of normal at (−2, −2) & Slope (−𝟏)/𝟑 (𝑦+2) = (−1)/3 (𝑥+2) 3 (𝑦+2) = −1 (𝑥+2) 3𝑦+6=−𝑥−2 3𝑦+𝑥=−6−2 3𝑦+𝑥=−8 𝟑𝒚+𝒙+𝟖=𝟎 Hence, the required equation of normal is 3y + 𝒙 ± 8 = 0 So, the correct answer is (C)