Maximum slope of the curve y = –x 3 + 3x 2 + 9x – 27 is:
(A) 0 (B) 12
(C) 16 (D) 32



Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
NCERT Exemplar - MCQs
Question 2 Important
Question 3 Important
Question 4 Important
Question 5 Important
Question 6
Question 7 Important
Question 8 Important
Question 9 Important
Question 10
Question 11 Important
Question 12 Important
Question 13
Question 14
Question 15 Important You are here
Question 16 Important
Question 17 Important
Question 1 Important Deleted for CBSE Board 2024 Exams
Question 2 Deleted for CBSE Board 2024 Exams
Question 3 Important Deleted for CBSE Board 2024 Exams
Question 4 Deleted for CBSE Board 2024 Exams
Question 5 Deleted for CBSE Board 2024 Exams
Question 6 Deleted for CBSE Board 2024 Exams
Question 7 Important Deleted for CBSE Board 2024 Exams
Question 8 Deleted for CBSE Board 2024 Exams
Question 9 Important Deleted for CBSE Board 2024 Exams
Question 10 Important Deleted for CBSE Board 2024 Exams
Question 11 Deleted for CBSE Board 2024 Exams
Question 12 Deleted for CBSE Board 2024 Exams
Question 13 Deleted for CBSE Board 2024 Exams
Last updated at May 29, 2023 by Teachoo
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Question 15 Maximum slope of the curve y = βx3 + 3x2 + 9π₯ β 27 is: 0 (B) 12 (C) 16 (D) 32 Given y = β π₯^3 + 3π₯^2 + 9π₯β 27 Now, Slope of the curve =π π/π π = β3π₯^2 + 6π₯+ 9 We need to find maximum slope Letβs assume π(π) = Slope Thus, we need to maximize π(π₯) Maximizing π(π) π(π₯) = β3π₯^2 + 6π₯+ 9 Finding πβ(π) π^β² (π)=β6π₯+6 =βπ(πβπ) Putting π^β² (π)=π β6 (π₯β1) = 0 π₯β1 = 0 π = 1 Finding sign of gβ(π) at x = 1 gβ(π₯) = β6 < 0 Since gββ(x) < 0 at x = 1 β΄ g is maximum at x = 1 Finding Maximum Value of g(x) g(1) = "β3 " γ(1)γ^2 "+ 6 (1) + 9" = β3 + 6 + 9 = β3 + 15 = 12 Hence, Maximum slope = Maximum value of g(x) = 12 So, the correct answer is (B)