Check sibling questions

The tangent to the curve γ€–y=eγ€—^2x at the point (0, 1) meets x-axis at:

(A)(0, 1)          (B) − 1/2, 0

(C) (2, 0)         (D) (0, 2)

Slide54.JPG

Slide55.JPG
Slide56.JPG

This video is only available for Teachoo black users

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Question 12 The tangent to the curve 〖𝑦=𝑒〗^2π‘₯ at the point (0, 1) meets x-axis at: (0, 1) (B) βˆ’ 1/2, 0 (C) (2, 0) (D) (0, 2) Given 〖𝑦=𝑒〗^2π‘₯ Finding slope of tangent at (0, 1) 〖𝑦=𝑒〗^2π‘₯ Differentiating w.r.t. π‘₯ π’…π’š/𝒅𝒙 = 2𝒆^πŸπ’™ At point (0, 1) Putting π‘₯=0, 𝑦=0 in 𝑑𝑦/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = γ€–2𝑒〗^0 𝑑𝑦/𝑑π‘₯ = 2 Γ— 1 π’…π’š/𝒅𝒙=𝟐 Finding equation of tangent Equation of line at (π‘₯1 , 𝑦1) & having Slope m is π‘¦βˆ’π‘¦1=π‘š(π‘₯βˆ’π‘₯1) ∴ Equation of tangent at point (0, 1) & having slope 2 is (π’šβˆ’πŸ) = 2 (π’™βˆ’πŸŽ) (π‘¦βˆ’1) = 2π‘₯ π’š=πŸπ’™+𝟏 Now, we need to find the point where tangent meets the x-axis Since point is on the x-axis, it’s y-coordinate will be 0 ∴ Point = (𝒙,𝟎) Putting 𝑦 = 0 in (1) 0 = 2𝒙 + 1 βˆ’1 = 2π‘₯ (βˆ’1)/2=π‘₯ 𝒙 = (βˆ’πŸ)/𝟐 Thus, required point is ((βˆ’πŸ)/𝟐, 𝟎) So, the Correct answer is (B)

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.