



Ex 3.2
Last updated at Dec. 16, 2024 by Teachoo
Transcript
Ex 3.2, 7 Find X and Y, if (ii) 2X + 3Y = [■8(2&3@4&0)] and 3X + 2Y = [■8(2&−2@−1&5)] Given 2X + 3Y = [■8(𝟐&𝟑@𝟒&𝟎)] Multiplying by 3 3 × (2X+ 3Y) = 3 [■8(2&3@4&0)] 6X + 9Y = [■8(2 × 3&3 × 3@4 × 3&0 × 3)] 6X + 9Y = [■8(6&9@12&0)] Given 3X + 2Y = [■8(𝟐&−𝟐@−𝟏&𝟓)] Multiplying by 2 2 × (3X + 2Y) = 2 × [■8(2&−2@−1&5)] 6X + 4Y = [■8(2 ×2&−2 ×2@−1 ×2&5 ×2)] 6X + 4Y = [■8(4&−4@−2&10)] Subtracting (1) from (2), (6X + 9Y) – (6X + 4Y) = [■8(6&9@12&0)] – [■8(4&−4@−2&10)] 6X + 9Y – 6X – 4Y = [■8(6−4&9−(−4)@12−(−2)&0−10)] 9Y – 4Y + 6X – 6X = [■8(2&9+4@12+2&−10)] 5Y + 0 = [■8(𝟐&𝟏𝟑@𝟏𝟒&−𝟏𝟎)] Y = 1/5 [■8(2&13@14&−10)] Y = [■8(𝟐/𝟓&𝟏𝟑/𝟓@𝟏𝟒/𝟓&−𝟏𝟎/𝟓)] = [■8(𝟐/𝟓&𝟏𝟑/𝟓@𝟏𝟒/𝟓&−𝟐)] Putting value of Y in (1) 6X + 9Y = [■8(6&9@12&0)] 6X + 9 [■8(2/5& 13/5@14/5&−2)] = [■8(6&9@12&0)] 6X + [■8(9 × 2/5&9 ×13/5@9 ×14/5&9 ×−2)] = [■8(6&9@12&0)] 6X + [■8(18/5&117/5@126/5&−18)] = [■8(6&9@12&0)] 6X = [■8(𝟔&𝟗@𝟏𝟐&𝟎)] – [■8(𝟏𝟖/𝟓&𝟏𝟏𝟕/𝟓@𝟏𝟐𝟔/𝟓&−𝟏𝟖)] 6X = [■8(6−18/5&9−117/5@12−126/5&0−(−18))] 6X = [■8((6 × 5 − 18)/5&(9 × 5 − 117)/5@ (12 × 5 − 126)/5&18)] 6X = [■8((30 − 18)/5&(45 − 117)/5@ (60 − 126)/5&18)] 6X = [■8(𝟏𝟐/𝟓&(−𝟕𝟐)/𝟓@ (−𝟔𝟔)/𝟓&𝟏𝟖)] X = 1/6 [■8(12/5&(−72)/5@ (−66)/5&18)] X = [■8(1/6 × 12/5&1/6 ×(−72)/5@1/6 ×(−66)/5&1/6 ×18)] X = [■8(𝟐/𝟓&(−𝟏𝟐)/𝟓@(−𝟏𝟏)/𝟓&𝟑)] Thus, X = [■8(𝟐/𝟓& (−𝟏𝟐)/𝟓@ (−𝟏𝟏)/𝟓&𝟑)] , Y = [■8(𝟐/𝟓&𝟏𝟑/𝟓@𝟏𝟒/𝟓&−𝟐)]