Area of Triangles

Question 1
Deleted for CBSE Board 2024 Exams

Question 2 Important Deleted for CBSE Board 2024 Exams

Question 3 Deleted for CBSE Board 2024 Exams

Question 4 Deleted for CBSE Board 2024 Exams

Question 5 Important Deleted for CBSE Board 2024 Exams

Question 6 Important Deleted for CBSE Board 2024 Exams

Question 7 Important Deleted for CBSE Board 2024 Exams

Question 8 Deleted for CBSE Board 2024 Exams

Question 9 Important Deleted for CBSE Board 2024 Exams

Question 10 Deleted for CBSE Board 2024 Exams

Question 11 Important Deleted for CBSE Board 2024 Exams

Question 12 Important Deleted for CBSE Board 2024 Exams

Question 13 Deleted for CBSE Board 2024 Exams

Question 14 Deleted for CBSE Board 2024 Exams

Question 15 Deleted for CBSE Board 2024 Exams You are here

Question 16 Important Deleted for CBSE Board 2024 Exams

Last updated at April 16, 2024 by Teachoo

Question 15 Diagonals AC and BD of a quadrilateral ABCD intersect at O in such a way that ar(AOD) = ar(BOC). Prove that ABCD is a trapezium . Given: A quadrilateral ABCD where diagonals AC & BD intersect at O & ar(AOD) = ar(BOC) To prove: ABCD is a trapezium Proof : A trapezium is a quadrilateral with one pair of opposite sides parallel Given ar(AOD) = ar(BOC) Adding ar (ODC) on both sides, Ar(AOD) + ar(ODC) = ar(BOC) + ar(ODC) ⇒ ar(ADC) = ar(BDC) Now, ΔADC and ΔBDC lie on the same base DC and are equal in area & they lie between the lines AB & DC, ⇒ AB ∥ DC In ABCD, AB ∥ DC So, one pair of opposite sides is parallel, ∴ ABCD is a trapezium Hence proved