Area of Triangles

Question 1
Deleted for CBSE Board 2025 Exams

Question 2 Important Deleted for CBSE Board 2025 Exams You are here

Question 3 Deleted for CBSE Board 2025 Exams

Question 4 Deleted for CBSE Board 2025 Exams

Question 5 Important Deleted for CBSE Board 2025 Exams

Question 6 Important Deleted for CBSE Board 2025 Exams

Question 7 Important Deleted for CBSE Board 2025 Exams

Question 8 Deleted for CBSE Board 2025 Exams

Question 9 Important Deleted for CBSE Board 2025 Exams

Question 10 Deleted for CBSE Board 2025 Exams

Question 11 Important Deleted for CBSE Board 2025 Exams

Question 12 Important Deleted for CBSE Board 2025 Exams

Question 13 Deleted for CBSE Board 2025 Exams

Question 14 Deleted for CBSE Board 2025 Exams

Question 15 Deleted for CBSE Board 2025 Exams

Question 16 Important Deleted for CBSE Board 2025 Exams

Last updated at April 16, 2024 by Teachoo

Question 2 In a triangle ABC , E is the mid-point of median AD show that ar(BED) = 1/4 ar (ABC). Given: Δ ABC, with AD as median i.e. BD = CD & E is the mid-point of AD, i.e., AE = DE To prove: ar (BED) = 1/4 ar (ABC). Proof : AD is a median of Δ ABC & median divides a triangle into two triangles of equal area ∴ ar (ABD) = ar (ACD) ⇒ ar (ABD) = 1/2 ar (ABC) In Δ ABD, BE is the median median divides a triangle into two triangles of equal area ∴ ar (BED) = ar (BEA) ⇒ ar (BED) = 1/2 ar (ABD) ⇒ ar (BED) = 1/2× 1/2 ar (ABC) ⇒ ar (BED) = 1/4 ar (ABC) Hence proved