Examples

Chapter 9 Class 9 - Areas of Parallelograms and Triangles [Deleted]
Serial order wise

This video is only available for Teachoo black users

This video is only available for Teachoo black users

Maths Crash Course - Live lectures + all videos + Real time Doubt solving!

### Transcript

Example 1 In given figure, ABCD is a parallelogram and EFCD is a rectangle. Also, AL ⊥ DC. Prove that (i) ar (ABCD) = ar (EFCD) Given that ABCD is a parallelogram Hence AB ∥ CD We know that a rectangle is also a parallelogram, so EFCD is also a parallelogram So, EF ∥ CD Since AB ∥ CD and EF ∥ CD we can say that EB ∥ CD Now, ABCD & EFDC are two parallelograms with the same base CD and between the same parallels EB & CD ∴ ar (ABCD) = ar (EFCD) Example 1 In Fig., ABCD is a parallelogram and EFCD is a rectangle. Also, AL ⊥ DC. Prove that (ii) ar (ABCD) = DC × AL ABCD is a parallelogram with Base DC and altitude AL Now, Area of a parallelogram = Base × Corresponding altitude ∴ ar (ABCD) = DC × AL Hence proved

#### Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.