Area of Triangles

Question 1
Deleted for CBSE Board 2025 Exams

Question 2 Important Deleted for CBSE Board 2025 Exams

Question 3 Deleted for CBSE Board 2025 Exams

Question 4 Deleted for CBSE Board 2025 Exams

Question 5 Important Deleted for CBSE Board 2025 Exams

Question 6 Important Deleted for CBSE Board 2025 Exams

Question 7 Important Deleted for CBSE Board 2025 Exams

Question 8 Deleted for CBSE Board 2025 Exams

Question 9 Important Deleted for CBSE Board 2025 Exams You are here

Question 10 Deleted for CBSE Board 2025 Exams

Question 11 Important Deleted for CBSE Board 2025 Exams

Question 12 Important Deleted for CBSE Board 2025 Exams

Question 13 Deleted for CBSE Board 2025 Exams

Question 14 Deleted for CBSE Board 2025 Exams

Question 15 Deleted for CBSE Board 2025 Exams

Question 16 Important Deleted for CBSE Board 2025 Exams

Last updated at April 16, 2024 by Teachoo

Question 9 The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q and then parallelogram PBQR is completed (see the following figure). Show that ar (ABCD) = ar (PBQR). Given: A parallelogram ABCD where CP AQ & PBQR is a parallelogram To prove: ar (ABCD) = ar (PBQR) Construction : Join AC & PQ Proof : For ACQ and AQP , ACQ and AQP are on the same base AQ and between the same parallels AQ and CP. ar(ACQ) = ar (APQ) Subtracting ar(ABQ) both sides ar(ACQ) ar(ABQ) = ar(APQ) ar(ABQ) ar(ABC) = ar(PBQ) In parallelogram ABCD, AC is diagonal ABC ADC ar(ABC) = ar(ADC) ar(ABC) = ar(ADC) = 1/2 ar(ABCD) In parallelogram PBQR, PQ is the diagonal PBQ PRQ ar(PBQ) = ar(PRQ) So, ar(PBQ) = ar(PRQ) = 1/2 ar(PBQR) From (1) ar(ABC) = ar(PBQ) 1/2 ar (ABCD) = 1/2 ar (PBQR) ar (ABCD) = ar (PBQR) Hence proved