Ex 7.6, 18 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.6, 18 Integrate the function - ππ₯ ((1 + sinβ‘π₯)/(1 + cosβ‘π₯ )) Simplifying function π^π₯ ((1 + sinβ‘π₯)/(1 + cosβ‘π₯ )) π^π₯ ((1 + sinβ‘π₯)/(1 + cosβ‘π₯ ))=π^π₯ ((1 + 2 sinβ‘(π₯/2) cosβ‘(π₯/2))/(2 γπππ ^2γβ‘(π₯/2) )) πππβ‘ππ=π πππβ‘π πππβ‘π Replacing x by π₯/2 , we get γπ ππ 2γβ‘(π₯/2)=2 π ππβ‘(π₯/2) πππ β‘(π₯/2) π ππβ‘π₯=2 π ππβ‘(π₯/2) πππ β‘(π₯/2) ππ¨π¬β‘ππ= 2γ"cos" γ^π π½βπ Replacing ππ₯ by π₯/2 γπππ 2γβ‘(π₯/2)=2πππ ^2 (π₯/2)β1 1+πππ β‘π₯=2πππ ^2 π₯/2 We know γπ ππ^2γβ‘π₯+γπππ ^2γβ‘π₯β‘= 1 Replacing x by π₯/2 , we get γπ ππ^2γβ‘(π₯/2)β‘γ+γπππ ^2γβ‘(π₯/2) γ=1 =π^π₯ ((γπππγ^πβ‘(π/π) + γπππγ^πβ‘(π/π) +2 γsin γβ‘γπ₯/2γ . γcos γβ‘γπ₯/2γ)/( 2 γπππ ^2γβ‘(π₯/2) )) =π^π₯ ((γsin γβ‘γπ₯/2γ + γcos γβ‘γπ₯/2γ )^2/( 2 γπππ ^2γβ‘(π₯/2) )) =π^π₯/2 ((γsin γβ‘γπ₯/2γ + γcos γβ‘γπ₯/2γ)/( πππ β‘γ π₯/2γ ))^2 =π^π₯/2 (γsin γβ‘γπ₯/2γ/( πππ β‘γ π₯/2γ ) + γcos γβ‘γπ₯/2γ/( πππ β‘γ π₯/2γ ))^2 =π^π₯/2 (γtan γβ‘γπ₯/2γ +1)^2 =π^π₯/2 (tan^2β‘γπ₯/2γ +(1)^2+2(γtan γβ‘γπ₯/2γ )(1)) =π^π₯/2 (γγπππγ^π γβ‘γπ/πγ +π+2 γtan γβ‘γπ₯/2γ ) =π^π₯/2 (γγπππγ^π γβ‘γπ/πγ +2 γtan γβ‘(π₯/2) ) =π^π₯ (1/2 . sec^2β‘γπ₯/2γ +2/2 γtan γβ‘(π₯/2) ) =π^π₯ (γtan γβ‘(π₯/2)+1/2 sec^2β‘(π₯/2) ) We know γ1+tan^2γβ‘π₯=sec^2β‘π₯ Replacing x by π₯/2 , we get γ1+γπ‘ππ^2γβ‘(π₯/2)γβ‘= sec^2 (π₯/2) Thus, Our Integration becomes β«1βγπ^π₯ " " ((1 + sinβ‘π₯)/(1 + cosβ‘π₯ )) ππ₯γ " "=β«1βγπ^π₯ (γtan γβ‘(π₯/2)+1/2 sec^2β‘(π₯/2) )ππ₯γ " " It is of the form β«1βγπ^π₯ [π(π₯)+π^β² (π₯)] γ ππ₯=π^π₯ π(π₯)+πΆ Where π(π₯)=tan^(β1)β‘π₯ π^β² (π₯)= 1/(1 + π₯^2 ) So, our equation becomes β«1βγπ^π₯ " " ((1 + sinβ‘π₯)/(1 + cosβ‘π₯ )) ππ₯γ " " = π^π γπππ γβ‘γπ/πγ+πͺ
Ex 7.6
Ex 7.6, 2 Important
Ex 7.6, 3
Ex 7.6, 4
Ex 7.6, 5 Important
Ex 7.6, 6
Ex 7.6, 7 Important
Ex 7.6, 8
Ex 7.6, 9
Ex 7.6, 10 Important
Ex 7.6, 11
Ex 7.6, 12
Ex 7.6, 13 Important
Ex 7.6, 14 Important
Ex 7.6, 15
Ex 7.6, 16
Ex 7.6, 17
Ex 7.6, 18 Important You are here
Ex 7.6, 19
Ex 7.6, 20 Important
Ex 7.6, 21
Ex 7.6, 22 Important
Ex 7.6, 23 (MCQ)
Ex 7.6, 24 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo