Check sibling questions


Transcript

Ex 7.6, 13 Integrate the function - tan^(βˆ’1) π‘₯ ∫1β–’γ€–" " tan^(βˆ’1) π‘₯" " γ€— .𝑑π‘₯=∫1β–’γ€–(tan^(βˆ’1) π‘₯) 1.𝑑π‘₯ " " γ€— = tan^(βˆ’1) π‘₯∫1β–’γ€–1 .γ€— 𝑑π‘₯βˆ’βˆ«1β–’(𝑑(tan^(βˆ’1)⁑π‘₯ )/𝑑π‘₯ ∫1β–’γ€–1 .𝑑π‘₯γ€—) 𝑑π‘₯ = tan^(βˆ’1) π‘₯ (π‘₯)βˆ’βˆ«1β–’1/(1 + π‘₯^2 ) . π‘₯ . 𝑑π‘₯ = π‘₯ tan^(βˆ’1) π‘₯βˆ’βˆ«1β–’π‘₯/(1 + π‘₯^2 ) . 𝑑π‘₯ Now we know that ∫1▒〖𝑓(π‘₯) 𝑔⁑(π‘₯) γ€— 𝑑π‘₯=𝑓(π‘₯) ∫1▒𝑔(π‘₯) 𝑑π‘₯βˆ’βˆ«1β–’(𝑓′(π‘₯)∫1▒𝑔(π‘₯) 𝑑π‘₯) 𝑑π‘₯ Putting f(x) = tan–1 x and g(x) = 1 Solving I1 I1 = ∫1β–’π‘₯/(1 + π‘₯^2 ) . 𝑑π‘₯" " Let 1 + π‘₯^2=𝑑 Differentiating both sides 𝑀.π‘Ÿ.𝑑.π‘₯ 0 + 2π‘₯=𝑑𝑑/𝑑π‘₯ 𝑑π‘₯=𝑑𝑑/2π‘₯ Our equation becomes I1 = ∫1β–’π‘₯/(1 + π‘₯^2 ) . 𝑑π‘₯" " Putting the value of (1+π‘₯^2 ) = t and 𝑑π‘₯ = 𝑑𝑑/( 2π‘₯) , we get I1 = ∫1β–’π‘₯/𝑑 . 𝑑𝑑/2π‘₯ I1 = 1/2 ∫1β–’1/𝑑 . 𝑑𝑑 I1 = 1/2 log⁑〖 |𝑑|γ€—+𝐢1 I1 = 1/2 log⁑〖 |1+π‘₯^2 |γ€—+𝐢1 Putting the value of I1 in (1) , ∫1β–’γ€–" " tan^(βˆ’1) π‘₯" " γ€— .𝑑π‘₯=π‘₯ tan^(βˆ’1) π‘₯βˆ’βˆ«1β–’π‘₯/(1 + π‘₯^2 ) . 𝑑π‘₯ =π‘₯ tan^(βˆ’1) π‘₯βˆ’(1/2 γ€–log 〗⁑|1+π‘₯^2 |+𝐢1) =π‘₯ tan^(βˆ’1) π‘₯βˆ’1/2 γ€–log 〗⁑|1+π‘₯^2 |βˆ’πΆ1 =𝒙 〖𝒕𝒂𝒏〗^(βˆ’πŸ) π’™βˆ’πŸ/𝟐 γ€–π’π’π’ˆ 〗⁑(𝟏+𝒙^𝟐 )+π‘ͺ

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo