Ex 7.6, 7 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.6, 7 (Method 1) π₯ sin^(β1)β‘π₯ β«1βγπ₯ γπ ππγ^(β1) γ π₯ ππ₯ Let x = sinβ‘π dx = cosβ‘π ππ Substituting values, we get β«1βγπ₯ γπ ππγ^(β1) γ π₯ ππ₯ = β«1βγsinβ‘π γπππγ^(βπ)β‘(πππβ‘π½ ) cosβ‘π ππ" " γ = β«1βγsinβ‘π π½ cosβ‘π ππ" " γ = 1/2 β«1βγπ γ(2 sinγβ‘π cosβ‘γπ)γ ππ" " γ = 1/2 β«1βγγπ sinγβ‘2π ππγ (β΅sin^(β1)β‘γ(sinβ‘π)γ = π) (β΅2β‘sinβ‘π₯ cosβ‘π₯ = β‘sinβ‘2π₯ ) Integrating by parts β«1βγπ(π₯) πβ‘(π₯) γ ππ₯=π(π₯) β«1βπ(π₯) ππ₯ββ«1β(π^β² (π₯) β«1βπ(π₯) ππ₯) ππ₯ Putting f(x) = ΞΈ and g(x) = sin 2ΞΈ = 1/2 [πβ«sinβ‘2π ππββ«(ππ/ππβ«sin 2π ππ)ππ] = 1/2 [π (β(cosβ‘2π))/2ββ«1.(βγ(cosγβ‘2π))/2 ππ] = 1/2 [(βπ)/2 cosβ‘2π+1/2β«cos 2π ππ] = 1/2 [(βπ)/2 cosβ‘2π+1/2 ( sinβ‘2π)/2] + C = (βπ)/4 πππβ‘ππ½ + 1/8 πππβ‘ππ½ + C = (βπ)/4 (1 β γππππγ^π π½) + 1/8 Γ 2 πππβ‘π½ ππ¨π¬ π½ + C = (βπ)/4 (1 β γ2π ππγ^2 π) + 1/4 π ππβ‘π πππ π + C = (βπ)/4 (1 β γ2π ππγ^2 π) + 1/4 π ππβ‘π β(1βsin^2 π) + C = (βsin^(β1)β‘π₯)/4 (1 β 2π₯^2 )+π₯/4 β(1βπ₯^2 )+C = ((γππγ^π β π))/π γπππγ^(βπ) π+π/π β(πβπ^π )+π Using π₯=sinβ‘π βΉ π=sin^(β1)β‘π₯ Ex 7.6, 7 (Method 2) π₯ sin^(β1)β‘π₯ β«1βγπ₯ sin^(β1)β‘π₯ γ ππ₯ =sin^(β1)β‘π₯ β«1βπ₯ ππ₯ββ«1β(π(sin^(β1)β‘π₯ )/ππ₯ β«1βγπ₯ .ππ₯γ)ππ₯ = sin^(β1)β‘π₯. π₯^2/2 ββ«1βγ1/β(1 β π₯^2 ) . π₯^2/2. ππ₯γ Now we know that β«1βγπ(π₯) πβ‘(π₯) γ ππ₯=π(π₯) β«1βπ(π₯) ππ₯ββ«1β(πβ²(π₯)β«1βπ(π₯) ππ₯) ππ₯ Putting f(x) = x and g(x) = sinβ1 x = π₯^2/2 sin^(β1)β‘π₯β1/2 β«1βγπ₯^2/β(1 β π₯^2 ) ππ₯γ Solving I1 I1 = 1/2 β«1βγπ₯^2/β(1 β π₯^2 ) ππ₯γ Multiplying and dividing by β1. I1 = 1/2 β«1βγγβπ₯γ^2/( ββ(1 β π₯^2 )) ππ₯γ I1 = (β1)/2 β«1βγγβπ₯γ^2/( β(1 β π₯^2 )) ππ₯γ I1 =(β1)/2 β«1βγγβ1 + 1 β π₯γ^2/( β(1 β π₯^2 )) ππ₯γ ("Adding and subtracting" "1 in numerator" ) I1 = (β1)/2 β«1βγ((β1)/β(1 β π₯^2 )+(1 βγ π₯γ^2)/β(1 β π₯^2 )) ππ₯γ I1 = (β1)/2 (β«1βγ(βπ)/β((π)^π βπ^π ).π πγ+β«1β(1βπ₯^2 )^(1 β 1/2) . ππ₯) I1 = (β1)/2 (βγπππγ^(βπ)β‘π +β«1β(1βπ₯^2 )^(1/2) . ππ₯) I1 = (β1)/2 (βsin^(β1)β‘π₯ +β«1ββ((1)^2βπ₯^2 ). ππ₯) I1 = (β1)/2 (βsin^(β1)β‘π₯ +π₯/2 β(1βπ₯^2 )+(1)^2/2 sin^(β1)β‘γ π₯/1γ+πΆ1) Using β«1βγππ₯/β(π^2 β π₯^2 )=sin^(β1)β‘γπ₯/πγ +πΆγ ππ πππ β(π^2βπ₯^2 ) ππ₯=1/π₯ π₯β(π^2βπ₯^2 )+π^2/2 sin^(β1)β‘γπ₯/πγ+πΆ I1 = (β1)/2 (βsin^(β1)β‘π₯+1/2 γ sinγ^(β1)β‘π₯+π₯/2 β(1βπ₯^2 )β‘+ πΆ1) I1 = (β1)/2 ((βsin^(β1)β‘π₯)/2 +π₯/2 β(1βπ₯^2 )β‘+ πΆ1) I1 = sin^(β1)β‘π₯/4 β π₯/4 β(1βπ₯^2 )β‘β πΆ1/2 Putting the value of I1 in eq. (1), we get β«1βγπ₯ sin^(β1)β‘π₯ ππ₯γ=π₯^2/2 sin^(β1)β‘π₯β(sin^(β1)β‘π₯/4 β π₯/4 β(1βπ₯^2 )β‘β πΆ1/2) =π₯^2/2 sin^(β1)β‘π₯βsin^(β1)β‘π₯/4+ π₯/4 β(1βπ₯^2 )β‘+ πΆ1/2 = sin^(β1)β‘π₯ (π₯^2/2β1/4)+ π₯/4 β(1βπ₯^2 )β‘+ πΆ = sin^(β1)β‘π₯ ((γ2π₯γ^2 β1)/4)+ π₯/4 β(1βπ₯^2 )β‘+ πΆ = ((γππγ^π βπ)/π) γπππγ^(βπ)β‘π+ π/π β(πβπ^π )β‘+ πͺ
Ex 7.6
Ex 7.6, 2 Important
Ex 7.6, 3
Ex 7.6, 4
Ex 7.6, 5 Important
Ex 7.6, 6
Ex 7.6, 7 Important You are here
Ex 7.6, 8
Ex 7.6, 9
Ex 7.6, 10 Important
Ex 7.6, 11
Ex 7.6, 12
Ex 7.6, 13 Important
Ex 7.6, 14 Important
Ex 7.6, 15
Ex 7.6, 16
Ex 7.6, 17
Ex 7.6, 18 Important
Ex 7.6, 19
Ex 7.6, 20 Important
Ex 7.6, 21
Ex 7.6, 22 Important
Ex 7.6, 23 (MCQ)
Ex 7.6, 24 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo