Check sibling questions


Transcript

Ex 7.6, 3 Integrate the function ๐‘ฅ^2 ๐‘’๐‘ฅ โˆซ1โ–’ใ€–๐‘ฅ^2 ๐‘’^๐‘ฅ ๐‘‘๐‘ฅใ€— = ๐‘ฅ^2 โˆซ1โ–’ใ€–๐‘’๐‘ฅ ๐‘‘๐‘ฅใ€—โˆ’โˆซ1โ–’(๐‘‘(๐‘ฅ^2 )/๐‘‘๐‘ฅ โˆซ1โ–’ใ€–๐‘’๐‘ฅ ๐‘‘๐‘ฅใ€—) ๐‘‘๐‘ฅ = ๐‘ฅ^2. ๐‘’๐‘ฅ โˆ’โˆซ1โ–’ใ€–2๐‘ฅ . ๐‘’๐‘ฅใ€— ๐‘‘๐‘ฅ = ๐‘ฅ^2. ๐‘’๐‘ฅ โˆ’2โˆซ1โ–’ใ€–๐’™ . ๐’†๐’™ใ€— ๐’…๐’™ Now we know that โˆซ1โ–’ใ€–๐‘“(๐‘ฅ) ๐‘”โก(๐‘ฅ) ใ€— ๐‘‘๐‘ฅ=๐‘“(๐‘ฅ) โˆซ1โ–’๐‘”(๐‘ฅ) ๐‘‘๐‘ฅโˆ’โˆซ1โ–’(๐‘“โ€ฒ(๐‘ฅ)โˆซ1โ–’๐‘”(๐‘ฅ) ๐‘‘๐‘ฅ) ๐‘‘๐‘ฅ Putting f(x) = x2 and g(x) = ex โ€ฆ(1) Solving I1 โˆซ1โ–’ใ€–๐‘ฅ ๐‘’^๐‘ฅ ๐‘‘๐‘ฅใ€— = ๐‘ฅโˆซ1โ–’๐‘’๐‘ฅ ๐‘‘๐‘ฅโˆ’โˆซ1โ–’(๐‘‘๐‘ฅ/๐‘‘๐‘ฅ โˆซ1โ–’๐‘’^๐‘ฅ ๐‘‘๐‘ฅ) ๐‘‘๐‘ฅ = ๐‘ฅ๐‘’๐‘ฅ โˆ’โˆซ1โ–’๐‘’๐‘ฅ ๐‘‘๐‘ฅ = ๐‘ฅ๐‘’๐‘ฅ โˆ’๐‘’๐‘ฅ Now we know that โˆซ1โ–’ใ€–๐‘“(๐‘ฅ) ๐‘”โก(๐‘ฅ) ใ€— ๐‘‘๐‘ฅ=๐‘“(๐‘ฅ) โˆซ1โ–’๐‘”(๐‘ฅ) ๐‘‘๐‘ฅโˆ’โˆซ1โ–’(๐‘“โ€ฒ(๐‘ฅ)โˆซ1โ–’๐‘”(๐‘ฅ) ๐‘‘๐‘ฅ) ๐‘‘๐‘ฅ Putting f(x) = x and g(x) = ex Putting value of I1 in our equation โˆด โˆซ1โ–’ใ€–๐‘ฅ^2 ๐‘’๐‘ฅ" " ใ€— ๐‘‘๐‘ฅ" = " ๐‘ฅ^2. ๐‘’๐‘ฅ โˆ’2โˆซ1โ–’ใ€–๐’™ . ๐’†๐’™ใ€— ๐’…๐’™ =๐‘ฅ^2. ๐‘’๐‘ฅ โˆ’2(๐’™๐’†๐’™โˆ’๐’†^๐’™ )+๐ถ =๐‘ฅ^2. ๐‘’๐‘ฅ โˆ’2๐‘ฅ๐‘’๐‘ฅ+ใ€–2๐‘’ใ€—^๐‘ฅ+๐ถ =๐’†๐’™ (๐’™^๐Ÿโˆ’๐Ÿ๐’™+๐Ÿ)+๐‘ช

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo