Ex 7.7, 2 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.7, 2 (Method 1) โ(1โ4๐ฅ2) โซ1โใโ(1โ4๐ฅ^2 ).๐๐ฅใ =โซ1โใโ(4(1/4โ๐ฅ^2 ) ).๐๐ฅใ =โซ1โใโ4 โ(1/4โ๐ฅ^2 ).๐๐ฅใ =2โซ1โใโ((1/2)^2โ๐ฅ^2 ).๐๐ฅ" " ใ It is of the form โซ1โใโ(๐^2โ๐ฅ^2 ) .๐๐ฅ=1/2 ๐ฅโ(๐^2โ๐ฅ^2 )+๐^2/2 ๐ ๐๐^(โ1) ๐ฅ/๐+๐ถ1ใ Replacing a with 2 and 1/2 , we get =2[1/2 ๐ฅโ((1/2)^2โ๐ฅ^2 ) +(1/2)^2.1/2 ๐ ๐๐^(โ1) ๐ฅ/(1/2)+๐ถ1] =2[1/2 ๐ฅโ(1/4โ๐ฅ^2 ) +1/4 . 1/2 ๐ ๐๐^(โ1) 2๐ฅ+๐ถ1] =๐ฅโ(1/4โ๐ฅ^2 )+1/4 ๐ ๐๐^(โ1) 2๐ฅ+2๐ถ1 =1/4 ๐ ๐๐^(โ1) 2๐ฅ+๐ฅโ((1 โ 4๐ฅ^2)/4)+๐ถ =๐/๐ ๐๐๐^(โ๐) ๐๐+๐/๐ ๐โ(๐ โ ๐๐^๐ )++๐ช [where ๐ถ=2๐ถ1] Ex 7.7, 2 (Method 2) โ(1โ4๐ฅ2) Let 2๐ฅ=๐ก Differentiating both sides w.r.t. ๐ฅ 2=๐๐ก/๐๐ฅ ๐๐ฅ=๐๐ก/2 Integrating the function โซ1โใโ(1โ4๐ฅ^2 ) ๐๐ฅใ =โซ1โใโ(1โ(2๐ฅ)^2 ) ๐๐ฅใ Putting value of t = 2๐ฅ and ๐๐ฅ = ๐๐ก/2 =โซ1โใโ(1โ๐ก^2 ) .๐๐ก/2ใ =1/2 โซ1โใโ(1โ๐ก^2 ) ๐๐กใ =1/2 โซ1โใโ((1)^2โ(๐ก)^2 ) ๐๐กใ =1/2 [๐ก/2 โ((1)^2โ๐ก^2 )+(1)^2/2 ๐ ๐๐^(โ1) ๐ก/((1) )+๐ถ1] =๐ก/4 โ(1โ๐ก^2 )+1/4 ๐ ๐๐^(โ1) (๐ก)+๐ถ1" " /2 =๐ก/4 โ(1โ๐ก^2 )+1/4 ๐ ๐๐^(โ1) (๐ก)+๐ถ It is of the form โซ1โใโ(๐^2โ๐ฅ^2 ) ๐๐ฅ=1/2 ๐ฅโ(๐^2โ๐ฅ^2 )+๐^2/2 ๐ ๐๐^(โ1) ๐ฅ/๐ +๐ถ1ใ Replacing a by 1 and ๐ฅ by ๐ก , we get Putting back t = 2x =2๐ฅ/4 โ(1โ(2๐ฅ)^2 )+1/4 ๐ ๐๐^(โ1) 2๐ฅ+๐ถ =๐/๐ ๐๐๐^(โ๐) ๐๐+๐/๐ โ(๐โ๐๐^๐ )+๐ช
Ex 7.7
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo