Ex 10.3, 17 - Chapter 10 Class 12 Vector Algebra
Last updated at April 16, 2024 by Teachoo
Ex 10.3
Ex 10.3, 2
Ex 10.3, 3 Important
Ex 10.3, 4
Ex 10.3, 5 Important
Ex 10.3, 6
Ex 10.3, 7
Ex 10.3, 8
Ex 10.3, 9 Important
Ex 10.3, 10 Important
Ex 10.3, 11
Ex 10.3, 12 Important
Ex 10.3, 13 Important
Ex 10.3, 14
Ex 10.3, 15 Important
Ex 10.3, 16 Important
Ex 10.3, 17 You are here
Ex 10.3, 18 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 10.3, 17 (Method 1) Show that the vectors 2π Μ β π Μ + π Μ, π Μ β 3π Μ β 5π Μ , 3π Μ β 4π Μ β 4π Μ form the vertices of a right angled triangle. Let A(2π Μ β π Μ + π Μ), B(π Μ β 3π Μ β 5π Μ) C(3π Μ β 4π Μ β 4π Μ) We know that two vectors are perpendicular to each other, i.e have an angle of 90Β° between them , if their scalar product is zero. (π΄π΅) β = (π Μ β 3π Μ β 5π Μ) β (2π Μ β π Μ + π Μ) = 1π Μ β 3π Μ β 5π Μ β 2π Μ + 1π Μ β 1π Μ = (1 β 2) π Μ + (β3 + 1) π Μ + (β5 β1) π Μ = β1π Μ β 2π Μ β 6π Μ (π΅πΆ) β = (3π Μ β 4π Μ β 4π Μ) β (π Μ β 3π Μ β 5π Μ) = 3π Μ β 4π Μ β 4π Μ β 1π Μ + 3π Μ + 5π Μ = (3 β 1) π Μ + (β4 + 3) π Μ + (β4 + 5) π Μ = 2π Μ β 1π Μ + 1π Μ (πΆπ΄) β = (2π Μ β π Μ + π Μ) β (3π Μ β 4π Μ β 4π Μ) = 2π Μ β 1π Μ + 1π Μ β 3π Μ + 4π Μ + 4π Μ = (2 β 3) π Μ + (β1 + 4) π Μ + (1 + 4) π Μ = β1π Μ + 3π Μ + 5π Μ Now, (π΅πΆ) β. (πΆπ΄) β = (2π Μ β 1π Μ + 1π Μ) . (-1π Μ + 3π Μ + 5π Μ) = (2 Γ β1) + (β1 Γ 3) + (1 Γ 5) = (β2) + (β3) + 5 = β5 + 5 = 0 Since, (π©πͺ) β. (πͺπ¨) β = 0 Therefore, (π΅πΆ) β is perpendicular to (πΆπ΄) β . Hence Ξ ABC is a right angled triangle Ex 10.3, 17 (Method 2) Show that the vectors 2π Μ β π Μ + π Μ, π Μ β 3π Μ β 5π Μ , 3π Μ β 4π Μ β 4π Μ form the vertices of a right angled triangle. Let A(2π Μ β π Μ + π Μ), B(π Μ β 3π Μ β 5π Μ) C(3π Μ β 4π Μ β 4π Μ) Considering βABC as a right angled triangle, By Pythagoras theorem, AB2 = BC2 + CA2 or |("AB" ) β |"2" = |("BC" ) β |"2" + |("CA" ) β |"2" (π΄π΅) β = (π Μ β 3π Μ β 5π Μ) β (2π Μ β π Μ + π Μ) = 1π Μ β 3π Μ β 5π Μ β 2π Μ + 1π Μ β 1π Μ = (1 β 2) π Μ + (β3 + 1) π Μ + (β5 β1) π Μ = β1π Μ β 2π Μ β 6π Μ (π΅πΆ) β = (3π Μ β 4π Μ β 4π Μ) β (π Μ β 3π Μ β 5π Μ) = 3π Μ β 4π Μ β 4π Μ β 1π Μ + 3π Μ + 5π Μ = (3 β 1) π Μ + (β4 + 3) π Μ + (β4 + 5) π Μ = 2π Μ β 1π Μ + 1π Μ (πΆπ΄) β = (2π Μ β π Μ + π Μ) β (3π Μ β 4π Μ β 4π Μ) = 2π Μ β 1π Μ + 1π Μ β 3π Μ + 4π Μ + 4π Μ = (2 β 3) π Μ + (β1 + 4) π Μ + (1 + 4) π Μ = β1π Μ + 3π Μ + 5π Μ Now, "Magnitude of " (π΄π΅) β" = " β((β1)2+(β2)2+(β6)2) " " |(π΄π΅) β |" = " β(1+4+36) " = " β41 Magnitude of (π΅πΆ) β = β(22+(β1)2+1) |(π΅πΆ) β | = β(4+1+1) = β6 Magnitude of (πΆπ΄) β = β((β1)2+32+52) |(πΆπ΄) β | = β(1+9+25) = β35 Now, |(π΅πΆ) β |2 + |(πΆπ΄) β |2 = (β6)2 + (β35)2 = 6 + 35 = 41 = (β41)2 = |(π΄π΅) β |2 Thus, |(π΄π΅) β |^2 = |(π΅πΆ) β |^2 + |(πΆπ΄) β |^2 So, ABC is a right angled triangle.