
Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 10.3
Ex 10.3, 2
Ex 10.3, 3 Important
Ex 10.3, 4
Ex 10.3, 5 Important
Ex 10.3, 6
Ex 10.3, 7
Ex 10.3, 8
Ex 10.3, 9 Important You are here
Ex 10.3, 10 Important
Ex 10.3, 11
Ex 10.3, 12 Important
Ex 10.3, 13 Important
Ex 10.3, 14
Ex 10.3, 15 Important
Ex 10.3, 16 Important
Ex 10.3, 17
Ex 10.3, 18 (MCQ) Important
Last updated at March 30, 2023 by Teachoo
Ex 10.3, 9 Find |𝑥 ⃗ |, if for a unit vector 𝑎 ⃗, (𝑥 ⃗ − 𝑎 ⃗).(𝑥 ⃗ + 𝑎 ⃗) = 12.Given 𝑎 ⃗ is a unit vector So, 𝑎 ⃗ has a magnitude 1. ∴ |𝒂 ⃗ | = 1. Given that (𝑥 ⃗ − 𝑎 ⃗) ⋅ (𝑥 ⃗ + 𝑎 ⃗) = 12 𝑥 ⃗ . 𝑥 ⃗ + 𝑥 ⃗ . 𝑎 ⃗ − 𝒂 ⃗ . 𝒙 ⃗ − 𝑎 ⃗ . 𝑎 ⃗ = 12 𝑥 ⃗ . 𝑥 ⃗ + 𝑥 ⃗ . 𝑎 ⃗ − 𝒙 ⃗ . 𝒂 ⃗ − 𝑎 ⃗ . 𝑎 ⃗ = 12 𝒙 ⃗ . 𝒙 ⃗ − 𝒂 ⃗ . 𝒂 ⃗ = 12 |𝒙 ⃗ |2 − |𝒂 ⃗ |2 = 12 |𝑥 ⃗ |2 − 12 = 12 |𝑥 ⃗ |2 = 12 + 1 (Using prop : 𝑥 ⃗ . 𝑎 ⃗ = 𝑎 ⃗ . 𝑥 ⃗ ) |𝑥 ⃗ |2 = 13 |𝑥 ⃗ | = ± √13 Since, magnitude of a vector is not negative, ∴ |𝒙 ⃗ | = √𝟏𝟑