Ex 10.3
Ex 10.3, 2
Ex 10.3, 3 Important
Ex 10.3, 4
Ex 10.3, 5 Important
Ex 10.3, 6
Ex 10.3, 7
Ex 10.3, 8
Ex 10.3, 9 Important
Ex 10.3, 10 Important
Ex 10.3, 11
Ex 10.3, 12 Important
Ex 10.3, 13 Important
Ex 10.3, 14
Ex 10.3, 15 Important You are here
Ex 10.3, 16 Important
Ex 10.3, 17
Ex 10.3, 18 (MCQ) Important
Last updated at Dec. 16, 2024 by Teachoo
You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.
Ex 10.3, 15 (Introduction) If the vertices A, B, C of a triangle ABC are (1,2,3), (–1, 0, 0), (0, 1, 2) respectively, then find ∠ABC. [∠ABC is the angle between the vectors (𝐵𝐴) ⃗ and (𝐵𝐶) ⃗]. Consider a triangle ABC as shown ∠ ABC is not the angle between vectors (𝐴𝐵) ⃗ and (𝐵𝐶) ⃗ But the angle between vectors (𝐵𝐴) ⃗ and (𝐵𝐶) ⃗ ∴ ∠ ABC = Angle between vectors (𝐵𝐴) ⃗ and (𝐵𝐶) ⃗ Ex 10.3, 15 If the vertices A, B, C of a triangle ABC are (1,2,3), (–1, 0, 0), (0, 1, 2) respectively, then find ∠ABC. [∠ABC is the angle between the vectors (𝐵𝐴) ̅ and (𝐵𝐶) ̅]. A (1, 2, 3) B (−1, 0, 0) C (0, 1, 2) ∠ABC = Angle b/w (𝐵𝐴) ⃗ and (𝐵𝐶) ⃗ We use formula 𝑎 ⃗. 𝑏 ⃗ = |𝑎 ⃗ | |𝑏 ⃗ | cos θ , θ is the angle b/w 𝑎 ⃗ & 𝑏 ⃗ We find (𝐵𝐴) ⃗ and (𝐵𝐶) ⃗ (𝐵𝐴) ⃗ = (1 − (-1)) 𝑖 ̂ + (2 – 0) 𝑗 ̂ + (3 – 0) 𝑘 ̂ = 2𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂ (𝐵𝐶) ⃗ = (0 − (−1)) 𝑖 ̂ + (1 − 0) 𝑗 ̂ + (2 − 0) 𝑘 ̂ = 1𝑖 ̂ + 1𝑗 ̂ + 2𝑘 ̂ Now, (𝑩𝑨) ⃗ . (𝑩𝑪) ⃗ = ("2" 𝑖 ̂" + " 2𝑗 ̂" + " 3𝑘 ̂) . ("1" 𝑖 ̂" + " 1𝑗 ̂" + " 2𝑘 ̂) = 2.1+2.1+3.2 = 2+2+6 = 10 Magnitude of (𝐵𝐶) ⃗ = √(12+12+22) |(𝑩𝑪) ⃗ | = √(1+1+4) = √𝟔 Also, (𝐵𝐴) ⃗ . (𝐵𝐶) ⃗ = |(𝐵𝐴) ⃗ | . |(𝐵𝐶) ⃗ | cos θ 10 = √17 × √6 × cos θ √17 × √6 × cos θ = 10 cos θ = 10/(√17 ×√6) cos θ = 10/√102 θ = cos−1 (10/√102) Thus ∠ABC = cos−1 (𝟏𝟎/√𝟏𝟎𝟐).