

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 10.3
Ex 10.3, 2 You are here
Ex 10.3, 3 Important
Ex 10.3, 4
Ex 10.3, 5 Important
Ex 10.3, 6
Ex 10.3, 7
Ex 10.3, 8
Ex 10.3, 9 Important
Ex 10.3, 10 Important
Ex 10.3, 11
Ex 10.3, 12 Important
Ex 10.3, 13 Important
Ex 10.3, 14
Ex 10.3, 15 Important
Ex 10.3, 16 Important
Ex 10.3, 17
Ex 10.3, 18 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 10.3, 2 Find the angle between the vectors π Μ β 2π Μ + 3π Μ and 3π Μ - 2π Μ + π ΜLet π β = π Μ β 2π Μ + 3π Μ = 1π Μ β 2π Μ + 3π Μ and π β = 3π Μ β 2π Μ + π Μ = 3π Μ β 2π Μ + 1π Μ We know that π β . π β = |π β ||π β | cos ΞΈ ; ΞΈ is the angle between π β & π β Now, π β. π β = (1π Μ β 2π Μ + 3π Μ). (3π Μ β 2π Μ + 1π Μ) = 1.3 + (β2).(β2) + 3.1 = 3 + 4 + 3 = 10 Magnitude of π β = β(12+(β2)2+32) |π β |= β(1+4+9) = β14 Magnitude of π β = β(32+(β2)2+12) |π β |= β(9+4+1) = β14 Now, π β . π β = |π β ||π β | cos ΞΈ 10 = β14 Γ β14 x cos ΞΈ 10 = 14 Γ cos ΞΈ cos ΞΈ = 10/14 ΞΈ = cos-1(π/π) Thus, the angle between π β and π β is cos-1(5/7)