Show that points A (1, 2, 7), B (2, 6, 3), C (3, 10, -1) are collinear

Ex 10.3, 16 - Chapter 10 Class 12 Vector Algebra - Part 2

Ex 10.3, 16 - Chapter 10 Class 12 Vector Algebra - Part 3 Ex 10.3, 16 - Chapter 10 Class 12 Vector Algebra - Part 4

 

  1. Chapter 10 Class 12 Vector Algebra (Term 2)
  2. Serial order wise

Transcript

Ex 10.3, 16 (Introduction) Show that the points A (1, 2, 7), B (2, 6, 3) & C (3, 10, โ€“1) are collinear. (1) Three points collinear i.e. AB + BC = AC (2) Three vectors collinear i.e. |(๐ด๐ต) โƒ— | + |(๐ต๐ถ) โƒ— | = |(๐ด๐ถ) โƒ— | (๐ต๐ถ) โƒ— = (3 โˆ’ 2) ๐‘– ฬ‚ + (10 โˆ’ 6) ๐‘— ฬ‚ + (โˆ’1 โˆ’ 3) ๐‘˜ ฬ‚ = 1๐‘– ฬ‚ + 4๐‘— ฬ‚ โˆ’ 4๐‘˜ ฬ‚ (๐ด๐ถ) โƒ— = (3 โˆ’ 1) ๐‘– ฬ‚ + (10 โˆ’ 2) ๐‘— ฬ‚ + (โˆ’1 โˆ’ 7) ๐‘˜ ฬ‚ = 2๐‘– ฬ‚ + 8๐‘— ฬ‚ โˆ’ 8๐‘˜ ฬ‚ Magnitude of (๐ด๐ต) โƒ— = โˆš(12+42+(โˆ’4)2) |(๐ด๐ต) โƒ— | = โˆš(1+16+16) = โˆš33 Magnitude of (๐ต๐ถ) โƒ— = โˆš(12+42+(โˆ’4)2) |(๐ต๐ถ) โƒ— | = โˆš(1+16+16) = โˆš33 Magnitude of (๐ด๐ถ) โƒ— = โˆš(22+82+(โˆ’8)2) |(๐ต๐ถ) โƒ— | = โˆš(4+64+64) = โˆš132 = โˆš(4ร—33 ) = 2โˆš(33 ) Thus, |(๐ด๐ต) โƒ— | + |(๐ต๐ถ) โƒ— | = โˆš(33 ) + โˆš(33 ) = 2โˆš(33 ) = |(๐ด๐ถ) โƒ— | Thus, A, B and C are collinear.

About the Author

Davneet Singh's photo - Teacher, Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.