Ex 10.3
Ex 10.3, 2
Ex 10.3, 3 Important
Ex 10.3, 4
Ex 10.3, 5 Important You are here
Ex 10.3, 6
Ex 10.3, 7
Ex 10.3, 8
Ex 10.3, 9 Important
Ex 10.3, 10 Important
Ex 10.3, 11
Ex 10.3, 12 Important
Ex 10.3, 13 Important
Ex 10.3, 14
Ex 10.3, 15 Important
Ex 10.3, 16 Important
Ex 10.3, 17
Ex 10.3, 18 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 10.3, 5 Show that each of the given three vectors is a unit vector: 1/7 (2𝑖 ̂ + 3𝑗 ̂ + 6𝑘 ̂), 1/7 (3𝑖 ̂ – 6𝑗 ̂ + 2𝑘 ̂), 1/7 (6𝑖 ̂ + 2𝑗 ̂ – 3𝑘 ̂), Also, show that they are mutually perpendicular to each other. 𝑎 ⃗ = 1/7 (2𝑖 ̂ + 3𝑗 ̂ + 6𝑘 ̂) = 2/7 𝑖 ̂ + 3/7 𝑗 ̂ + 6/7 𝑘 ̂ 𝑏 ⃗ = 1/7 (3𝑖 ̂ − 6𝑗 ̂ + 2𝑘 ̂) = 3/7 𝑖 ̂ – 6/7 𝑗 ̂ + 2𝑘/7 𝑘 ̂ 𝑐 ⃗ = 1/7 (6𝑖 ̂ + 2𝑗 ̂ - 3𝑘 ̂) = 6/7 𝑖 ̂ + 2/7 𝑗 ̂ – 3/7 𝑘 ̂ Magnitude of 𝑎 ⃗ = √((2/7)^2+(3/7)^2+(6/7)^2 ) |𝑎 ⃗ | = √(4/49+9/49+36/49) = √(49/49) = 1 Since |𝑎 ⃗ | = 1 So, 𝑎 ⃗ is a unit vector. Magnitude of 𝑏 ⃗ = √((3/7)^2+((−6)/7)^2+(2/7)^2 ) |𝑏 ⃗ | = √(9/49+36/49+4/49)= √(49/49) = 1 Since |𝑏 ⃗ | = 1 So, 𝑏 ⃗ is a unit vector. Magnitude of 𝑐 ⃗ = √((6/7)^2+(2/7)^2+((−3)/7)^2 ) |𝑐 ⃗ | = √(36/49+4/49+9/49) = √(49/49) = 1 Since |𝑐 ⃗ | = 1, So, 𝑐 ⃗ is a unit vector Now, we need to show that they are mutually perpendicular to each other. So, 𝒂 ⃗. 𝒃 ⃗ = 𝒃 ⃗. 𝒄 ⃗ = 𝒄 ⃗ . 𝒂 ⃗ = 0 Thus, they are mutually perpendiculars to each other. 𝑎 ⃗ = 2/7 𝑖 ̂ + 3/7 𝑗 ̂ + 6/7 𝑘 ̂ 𝑏 ⃗ = 3/7 𝑖 ̂ – 6/7 𝑗 ̂ + 2/7 𝑘 ̂ 𝒂 ⃗. 𝒃 ⃗ = 2/7 . 3/7 + 3/7 (−6/7) + 6/7 . 2/7 = 6/49 − 18/49 + 12/49 = 0 𝑏 ⃗ = 3/7 𝑖 ̂ − 6/7 𝑗 ̂ + 2/7 𝑘 ̂ 𝑐 ⃗ = 6/7 𝑖 ̂ + 2/7 𝑗 ̂ – 3/7 𝑘 ̂ 𝒃 ⃗. 𝒄 ⃗ = 3/7 . 6/7 + (−6/7) 2/7 + 2/7 . ((−3)/7) = 18/49 − 12/49 − 6/49 = 0 𝑐 ⃗ = 6/7 𝑖 ̂ + 2/7 𝑗 ̂ − 3/7 𝑘 ̂ 𝑎 ⃗ = 2/7 𝑖 ̂ + 3/7 𝑗 ̂ + 6/7 𝑘 ̂ 𝒄 ⃗. 𝒂 ⃗ = 6/7 . 2/7 + 2/7. 3/7 + ((−3)/7) 6/7 = 12/49 + 6/49 − 18/49 = 0