        Subscribe to our Youtube Channel - https://you.tube/teachoo

1. Chapter 10 Class 11 Straight Lines
2. Serial order wise
3. Miscellaneous

Transcript

Misc 23 Prove that the product of the lengths of the perpendiculars drawn from the points (√(𝑎^2 − 𝑏^2 ), 0) and ( − √(𝑎^2 − 𝑏^2 ), 0) to the line 𝑥/𝑎 cos 𝜃 + 𝑦/𝑏 sin 𝜃 = 1 is b2 . Let point A be (√(𝑎^2−𝑏^2 ), 0) & point B be (−√(𝑎^2−𝑏^2 ), 0) The given line is 𝑥/𝑎 cos θ + 𝑦/𝑏 sinθ = 1 We need to show that Product of the length of perpendiculars from point A & point B to the line 𝑥/𝑎 cos θ + 𝑦/𝑏 sin θ = 1 is b2 Let p1 be the perpendicular distance from point A(√(𝑎^2 − 𝑏^2 ), 0) to the line 𝑥/𝑎 cos θ + 𝑦/𝑎 sin θ = 1 & p2 be the perpendicular distance from point B( − √(𝑎^2 − 𝑏^2 ), 0) to the line 𝑥/𝑎 cos θ + 𝑦/𝑎 sin θ = 1 We need to show p1 × p2 = b2 Calculating p1 & p2 Given line is (𝑥 )/𝑎 cos θ + 𝑦/𝑏sin θ = 1 (cos⁡𝜃/𝑎) x + (sin⁡𝜃/𝑏)y − 1 = 0 The above equation is of the form Ax + By + C = 0 Here A = cos⁡𝜃/𝑎, B = sin⁡𝜃/𝑏 & C = − 1 We know that Distance of a point (x1, y1) from line Ax + By + C = 0 is d = |〖𝐴𝑥〗_1 + 〖𝐵𝑦〗_1 + 𝑐|/√(𝐴^2 + 𝐵^2 ) Perpendicular distance p1 of point A(√(𝑎^2 − 𝑏^2 ), 0) from the line 𝑥/𝑎 cos θ + 𝑦/𝑏 sin θ = 1 is d = |〖𝐴𝑥〗_1 + 〖𝐵𝑦〗_1 + 𝑐|/√(𝐴^2 + 𝐵^2 ) Putting values p1 = |cos⁡𝜃/𝑎 √(𝑎^2 + 𝑏^2 ) + sin⁡𝜃/𝑏 (0) + ( − 1)|/√((cos⁡𝜃/𝑎)^2 + (sin⁡𝜃/𝑏)^2 ) p1 = (√(𝑎^2 − 𝑏^2 )/𝑎 cos⁡𝜃 + 0 − 1)/√((〖𝑐𝑜𝑠〗^2 𝜃)/𝑎^2 + (〖𝑠𝑖𝑛〗^2 𝜃)/𝑏^2 ) p1 = (√(𝑎^2 − 𝑏^2 )/𝑎 cos⁡𝜃 − 1)/√((〖𝑐𝑜𝑠〗^2 𝜃)/𝑎^2 + (〖𝑠𝑖𝑛〗^2 𝜃)/𝑏^2 ) Perpendicular distance p2 of point B = ( − √(𝑎^2 − 𝑏^2 ), 0) from the line 𝑥/𝑎 cos θ + 𝑦/𝑏 sin θ = 1 is d = |𝐴𝑥1 + 𝐵𝑦1 + 𝑐|/√(𝑎^2 + 𝑏^2 ) Putting values p2 = |cos⁡𝜃/𝑎 ( − √(𝑎^2 − 𝑏^2 )) + sin⁡𝜃/𝑏 (0) + ( − 1)|/√((cos⁡𝜃/𝑎)^2 + (sin⁡𝜃/𝑏)^2 ) p2 = ( − √(𝑎^2 − 𝑏^2 )/𝑎 cos⁡𝜃 + 0 − 1)/√((cos⁡𝜃/𝑎)^2 + (sin⁡𝜃/𝑏)^2 ) p2 = ( − √(𝑎^2 − 𝑏^2 )/𝑎 cos⁡𝜃 − 1)/√(〖𝑐𝑜𝑠〗^2/𝑎^2 + (〖𝑠𝑖𝑛〗^2 𝜃)/𝑏^2 ) Finding p1p2

Miscellaneous 