![Misc 23 - Chapter 10 Class 11 Straight Lines - Part 2](https://cdn.teachoo.com/35d29d52-4ee4-4436-a1e5-ce8f6e576d3e/slide119.jpg)
![Misc 23 - Chapter 10 Class 11 Straight Lines - Part 3](https://cdn.teachoo.com/1ee51214-7d49-4f17-adce-97f801909058/slide120.jpg)
![Misc 23 - Chapter 10 Class 11 Straight Lines - Part 4](https://cdn.teachoo.com/9560dbf3-ab06-417c-a319-de890c0f1f92/slide121.jpg)
![Misc 23 - Chapter 10 Class 11 Straight Lines - Part 5](https://cdn.teachoo.com/521d5c47-2b03-481b-8efe-9928f7ba7206/slide122.jpg)
![Misc 23 - Chapter 10 Class 11 Straight Lines - Part 6](https://cdn.teachoo.com/75ed9ec7-7a40-4589-b14f-1d977be9f843/slide123.jpg)
![Misc 23 - Chapter 10 Class 11 Straight Lines - Part 7](https://cdn.teachoo.com/148bd48b-2868-4543-af9c-acae772dfe91/slide124.jpg)
![Misc 23 - Chapter 10 Class 11 Straight Lines - Part 8](https://cdn.teachoo.com/4d05b839-fd8e-4048-a684-94c26fdebd99/slide125.jpg)
Miscellaneous
Last updated at Dec. 16, 2024 by Teachoo
Misc 22 Prove that the product of the lengths of the perpendiculars drawn from the points (β(π^2 β π^2 ), 0) and ( β β(π^2 β π^2 ), 0) to the line π₯/π cos π + π¦/π sin π = 1 is b2 . Let point A be (β(π^2βπ^2 ), 0) & point B be (ββ(π^2βπ^2 ), 0) The given line is π₯/π cos ΞΈ + π¦/π sinΞΈ = 1 We need to show that Product of the length of perpendiculars from point A & point B to the line π₯/π cos ΞΈ + π¦/π sin ΞΈ = 1 is b2 Let p1 be the perpendicular distance from point A(β(π^2 β π^2 ), 0) to the line π₯/π cos ΞΈ + π¦/π sin ΞΈ = 1 & p2 be the perpendicular distance from point B( β β(π^2 β π^2 ), 0) to the line π₯/π cos ΞΈ + π¦/π sin ΞΈ = 1 We need to show p1 Γ p2 = b2 Calculating p1 & p2 Given line is (π₯ )/π cos ΞΈ + π¦/πsin ΞΈ = 1 (cosβ‘π/π) x + (sinβ‘π/π)y β 1 = 0 The above equation is of the form Ax + By + C = 0 Here A = cosβ‘π/π, B = sinβ‘π/π & C = β 1 We know that Distance of a point (x1, y1) from line Ax + By + C = 0 is d = |γπ΄π₯γ_1 + γπ΅π¦γ_1 + π|/β(π΄^2 + π΅^2 ) Perpendicular distance p1 of point A(β(π^2 β π^2 ), 0) from the line π₯/π cos ΞΈ + π¦/π sin ΞΈ = 1 is d = |γπ΄π₯γ_1 + γπ΅π¦γ_1 + π|/β(π΄^2 + π΅^2 ) Putting values p1 = |cosβ‘π/π β(π^2 + π^2 ) + sinβ‘π/π (0) + ( β 1)|/β((cosβ‘π/π)^2 + (sinβ‘π/π)^2 ) p1 = (β(π^2 β π^2 )/π cosβ‘π + 0 β 1)/β((γπππ γ^2 π)/π^2 + (γπ ππγ^2 π)/π^2 ) p1 = (β(π^2 β π^2 )/π cosβ‘π β 1)/β((γπππ γ^2 π)/π^2 + (γπ ππγ^2 π)/π^2 ) Perpendicular distance p2 of point B = ( β β(π^2 β π^2 ), 0) from the line π₯/π cos ΞΈ + π¦/π sin ΞΈ = 1 is d = |π΄π₯1 + π΅π¦1 + π|/β(π^2 + π^2 ) Putting values p2 = |cosβ‘π/π ( β β(π^2 β π^2 )) + sinβ‘π/π (0) + ( β 1)|/β((cosβ‘π/π)^2 + (sinβ‘π/π)^2 ) p2 = ( β β(π^2 β π^2 )/π cosβ‘π + 0 β 1)/β((cosβ‘π/π)^2 + (sinβ‘π/π)^2 ) p2 = ( β β(π^2 β π^2 )/π cosβ‘π β 1)/β(γπππ γ^2/π^2 + (γπ ππγ^2 π)/π^2 ) Finding p1p2