Subscribe to our Youtube Channel - https://you.tube/teachoo

Last updated at Feb. 3, 2020 by Teachoo

Transcript

Let point where line (1) & (3) intersect be A & point where line (2) & (3) intersect be B We need to find Area triangle Δ OAB We know O(0,0) We need to find coordinates of A & B Coordinate of point A Point A is the intersection of x = k & y – x = 0 Putting x = k in equation (1) y − x = 0 y – k = 0 y = k So, point A (k, k) Coordinate of point B Point B is the intersection of x = k & y + x = 0 Putting x = k in equation (2) y + x = 0 y + k = 0 y = –k So, point B (k, –k) We know that Area of triangle whose vertices are (x1, y1), (x2, y2), and (x3, y3) is = 1/2 |𝑥1(𝑦2 − 𝑦3) + 𝑥2(𝑦3 − 𝑦1) + 𝑥3 (𝑦1 − 𝑦2)| For ∆ AOB, (x1, y1) = O(0, 0) (x2,y2) = A(k, k) (x3,y3) = B(k, –k) Area of triangle ∆OAB whose vertices are (0, 0) (k, k) & (k, − k) = 1/2 |0(𝑘−(− 𝑘))+𝑘(−𝑘 −0) 𝑘(0−𝑘)| = 1/2 |0(k−(− k))+k(−k −0) k(0−k)| = 1/2 |0+k(−k)+k(−k)| = 1/2 |−k2−k2| = 1/2 |−2k2| = 2k2/2 = k2 square units Hence, required area of triangle is k2 square units

Miscellaneous

Misc 1
Important

Misc 2 Important

Misc 3 Important

Misc 4

Misc 5

Misc 6 Important

Misc 7

Misc 8 Important You are here

Misc 9 Important

Misc 10

Misc 11 Important

Misc 12 Important

Misc 13

Misc 14

Misc 15 Important

Misc 16 Important

Misc 17

Misc 18 Important

Misc 19 Important

Misc 20 Important

Misc 21 Important

Misc 22 Important

Misc 23

Misc 24 Important

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.