



Subscribe to our Youtube Channel - https://you.tube/teachoo
Last updated at May 29, 2018 by Teachoo
Transcript
Misc 7 Find the equation of a line drawn perpendicular to the line ๐ฅ/4 + ๐ฆ/6 = 1 through the point, where it meets the y-axis. Let equation of line AB be ๐ฅ/4 + ๐ฆ/6 = 1 Above equation is of the form ๐ฅ/๐ + ๐ฆ/b = 1 Where a = x-intercept of line = 4 b = y-intercept of line = 6 Since line AB makes y-intercept 6 โด Line AB meets y-axis at point (0, 6) Let line CD be drawn perpendicular to the line AB through the point where AB meet at the y-axes So, line CD is perpendicular to the line AB & passes through the point (0,6) We need to find the equation of line CD Now, Given that line CD is perpendicular to line AB And we know that if two lines are perpendicular, the product of their slopes is equal to -1 So, slope of line CD ร slope of line AB = โ 1 Slope of CD = ( โ 1)/(๐๐๐๐๐ ๐๐ ๐ด๐ต) Finding slope of line AB Equation of line AB is ๐ฅ/4 + ๐ฆ/6 = 1 (3๐ฅ + 2๐ฆ )/12 = 1 3x + 2y = 12 2y = โ 3x + 12 y = ( โ 3๐ฅ + 12)/2 y = (( โ 3)/2)x + (12/2) The above equation is of the form y = mx + c where m = slope of line โด Slope of line AB = m = ( โ 3)/2 From (1) Slope of CD = ( โ 1)/(๐๐๐๐๐ ๐๐ ๐ด๐ต) = ( โ 1)/(( โ 3)/2) = (โ1 ร 2)/(โ3) = 2/3 We know that equation of line passing through (x1, y1) & having slope m is (y โ y1) = m(x โ x1) Equation of line CD passing through point (0, 6) & having slope 2/3 is (y โ 6) = 2/3 (x โ 0) y โ 6 = 2/3 x 3(y โ 6) = 2x 3y โ 18 = 2x 3y โ 2x โ 18 = 0 โ 3y + 2x + 18 = 0 2x โ 3y + 18 = 0 Which is required equation
Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4
Misc 5
Misc 6 Important
Misc 7 You are here
Misc 8 Important
Misc 9 Important
Misc 10
Misc 11 Important
Misc 12 Important
Misc 13
Misc 14
Misc 15 Important
Misc 16 Important
Misc 17
Misc 18 Important
Misc 19 Important
Misc 20 Important
Misc 21 Important
Misc 22 Important
Misc 23
Misc 24 Important
About the Author