Misc 4 - Chapter 9 Class 11 Straight Lines
Last updated at April 16, 2024 by Teachoo
Miscellaneous
Misc 2 Important
Misc 3
Misc 4 You are here
Misc 5 Important
Misc 6
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11 Important
Misc 12
Misc 13
Misc 14 Important
Misc 15 Important
Misc 16
Misc 17 Important
Misc 18 Important
Misc 19 Important
Misc 20 Important
Misc 21 Important
Misc 22
Misc 23 Important
Question 1 Important Deleted for CBSE Board 2025 Exams
Last updated at April 16, 2024 by Teachoo
Misc 4 Find the perpendicular distance from the origin to the line joining the points (cos , sin ) and (cos , sin ) . Frist we find equation of line We know that equation of line joining two point (x1, y1) & (x2, y2) is (y y1) = ( 2 1)/( 2 1) (x x1) Equation of line passing through (cos , sin ) & (cos , sin ) is (y sin ) = (sin sin )/(cos cos ) (x cos ) (cos cos ) (y sin ) = ("sin " " " " sin " )(x cos ) cos (y sin ) cos (y sin ) = "sin " (x cos ) sin (x cos ) cos y cos sin cos y + cos sin = sin x sin cos sin x + sin cos cos y cos sin cos y + cos sin = sin x sin cos sin x + sin cos cos y cos y cos sin + cos sin = sin x sin x sin cos + sin cos (cos cos )y cos sin + cos sin = (sin sin )x sin cos + sin cos (cos cos )y (sin sin )x = "sin " " cos "+" sin cos "+ " cos " " sin " "cos sin " (cos cos )y (sin sin )x = sin cos + cos sin (sin sin )x + (cos cos )y = sin cos + cos sin (sin sin )x + (cos cos )y = cos sin sin cos (sin sin )x + (cos - cos )y = sin cos sin cos (sin sin )x + (cos - cos )y = sin ( ) (sin sin )x + (cos - cos )y sin ( ) = 0 The above equation is of the form Ax + By + C = 0 Here A = (sin sin ) , B = (cos cos ) , C = sin ( ) We know that distance of a point (x1, y1) from line Ax + By + C = 0 is d = | _1 + _1 + |/ ( ^2 + ^2 ) Distance of origin (0, 0) to the line (sin sin )x + (cos - cos )y = sin ( ) is d = | _1 + _1 + |/ ( ^2 + ^2 ) Putting values d = | "(" sin " " sin ")" 0 + "(" cos " " " " cos ")" 0 + ( sin ( )|/ ( "(" sin " " sin ")" ^2 + "(" cos " " " " cos ")" ^2 ) d = |0 + 0 sin ( )|/ ( "(" sin " " sin ")" ^2 + "(" cos " " " " cos ")" ^2 ) d = | sin ( )|/ ( "(" sin " " sin ")" ^2 + "(" cos " " " " cos ")" ^2 ) d = | sin ( + )|/ ( "(" sin " " sin ")" ^2 + "(" cos " " " " cos ")" ^2 ) d = | sin ( )|/ ( "(" sin " " sin ")" ^2 + "(" cos " " " " cos ")" ^2 ) d = | sin ( )|/ ((2cos (( " " + " " )/2)". " sin (( " " )/2))^2+( 2 sin (( " " + " " )/2)"." sin(( " " )/2))^2 ) d = | sin ( )|/ (4cos^2 (( " " + " " )/2)"." sin^2 (( " " )/2)+ " " 4 sin ^2 (( " " + " " )/2)"." sin^2 (( " " )/2) ) d = | sin ( )|/ (4 sin ^2 (( " " )/2)(cos^2 (( " " + " " )/2)+ sin ^2 (( " " + " " )/2)) ) d = | sin ( )|/( (4 sin ^2 (( " " )/2).1) ) d = | sin ( )|/ (2^2 ^2 (( " " )/2) ) d = | sin ( )|/(2 | (( " " )/2)| ) Thus, the required distance is | sin ( )|/(2 | (( " " )/2)| )