     1. Chapter 10 Class 11 Straight Lines
2. Serial order wise
3. Miscellaneous

Transcript

Misc 15 Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line 2x y = 0. There are two lines Line AB 4x + 7y + 5 = 0 Line CD 2x y = 0 Both lines meet at Q Point P(1, 2) is on line CD We need to find distance PQ. In PQ, P is (1, 2) We need to find point Q To find PQ, we must find coordinates of point Q Finding coordinate of point Q Point Q is the intersection of lines AB & CD From (1) 2x y = 0 2x = y y = 2x Putting value of y in (2) 4x + 7(2x) + 5 = 0 4x + 14x + 5 = 0 18x = 5 x = ( 5)/18 Putting x = ( 5)/18 in (1) 2x y = 0 2(( 5)/18) y = 0 ( 5)/9 y = 0 ( 5)/9 = y y = ( 5)/9 Hence coordinates of point Q is (( 5)/18,( 5)/9) Now, we have to find distance PQ We know that distance of points (x1, y1 ) & (x2, y2) is d = (( _2 _1 )2 + ( _2 _1 ) ) 2 Distance PQ where P(1, 2) & Q(( 5)/18, ( 5)/9) is PQ = ((( 5)/18 1)^2 + (( 5)/9 2)^2 ) = ((( 5 18)/18)^2 + (( 5 18)/9)^2 ) = ((( 23)/18)^2 + (( 23)/9)^2 ) = ((( 23)/(2 9))^2 + (( 23)/9)^2 ) = ((( 23)/( 9))^2 (1/2)^2 + (( 23)/( 9))^2 ) = ((( 23)/( 9))^2 (1/4 + 1) ) = ((( 23)/( 9))^2 ((1 + 4)/4) ) = ((( 23)/( 9))^2 (5/4) ) = ( 23)/9 (5/4) = ( 23)/9 (5/2^2 ) = ( 23)/(9 ) 5/2 = ( 23 5)/18 But distance is always positive Hence distance of PQ = (23 5)/18 Hence, the required distance is (23 5)/18

Miscellaneous 