Subscribe to our Youtube Channel - https://you.tube/teachoo

Last updated at Feb. 3, 2020 by Teachoo

Transcript

Misc 12 Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes. Given lines are 4x + 7y − 3 = 0 2x – 3y + 1 = 0 We need to calculate Equation of line that passes through point of intersection of lines (1) & (2) & make equal intercepts on the axes Calculating point of intersection of lines (1) & (2) Misc 12 Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes. Given lines are 4x + 7y − 3 = 0 2x – 3y + 1 = 0 We need to calculate Equation of line that passes through point of intersection of lines (1) & (2) & make equal intercepts on the axes Calculating point of intersection of lines (1) & (2) Misc 12 Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes. Given lines are 4x + 7y − 3 = 0 2x – 3y + 1 = 0 We need to calculate Equation of line that passes through point of intersection of lines (1) & (2) & make equal intercepts on the axes Calculating point of intersection of lines (1) & (2) Misc 12 Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes. Given lines are 4x + 7y − 3 = 0 2x – 3y + 1 = 0 We need to calculate Equation of line that passes through point of intersection of lines (1) & (2) & make equal intercepts on the axes Calculating point of intersection of lines (1) & (2) Misc 12 Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes. Given lines are 4x + 7y − 3 = 0 2x – 3y + 1 = 0 We need to calculate Equation of line that passes through point of intersection of lines (1) & (2) & make equal intercepts on the axes Calculating point of intersection of lines (1) & (2) From (2) 2x − 3y + 1 = 0 2x = 3y − 1 x = (3𝑦 − 1)/2 Putting value of x in (1) 4x + 7y − 3 = 0 4((3𝑦 − 1)/2) + 7y − 3 = 0 2(3y − 1) + 7y − 3 = 0 6y − 2 + 7y − 3 = 0 13y − 5 = 0 13y = 5 y = 5/13

Miscellaneous

Misc 1
Important

Misc 2 Important

Misc 3 Important

Misc 4

Misc 5

Misc 6 Important

Misc 7

Misc 8 Important

Misc 9 Important

Misc 10

Misc 11 Important

Misc 12 Important You are here

Misc 13

Misc 14

Misc 15 Important

Misc 16 Important

Misc 17

Misc 18 Important

Misc 19 Important

Misc 20 Important

Misc 21 Important

Misc 22 Important

Misc 23

Misc 24 Important

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.