Miscellaneous

Chapter 10 Class 11 Straight Lines
Serial order wise      This video is only available for Teachoo black users

Solve all your doubts with Teachoo Black (new monthly pack available now!)

### Transcript

Misc 12 Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes. Given lines are 4x + 7y − 3 = 0 2x – 3y + 1 = 0 We need to calculate Equation of line that passes through point of intersection of lines (1) & (2) & make equal intercepts on the axes Calculating point of intersection of lines (1) & (2) Misc 12 Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes. Given lines are 4x + 7y − 3 = 0 2x – 3y + 1 = 0 We need to calculate Equation of line that passes through point of intersection of lines (1) & (2) & make equal intercepts on the axes Calculating point of intersection of lines (1) & (2) Misc 12 Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes. Given lines are 4x + 7y − 3 = 0 2x – 3y + 1 = 0 We need to calculate Equation of line that passes through point of intersection of lines (1) & (2) & make equal intercepts on the axes Calculating point of intersection of lines (1) & (2) Misc 12 Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes. Given lines are 4x + 7y − 3 = 0 2x – 3y + 1 = 0 We need to calculate Equation of line that passes through point of intersection of lines (1) & (2) & make equal intercepts on the axes Calculating point of intersection of lines (1) & (2) Misc 12 Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes. Given lines are 4x + 7y − 3 = 0 2x – 3y + 1 = 0 We need to calculate Equation of line that passes through point of intersection of lines (1) & (2) & make equal intercepts on the axes Calculating point of intersection of lines (1) & (2) From (2) 2x − 3y + 1 = 0 2x = 3y − 1 x = (3𝑦 − 1)/2 Putting value of x in (1) 4x + 7y − 3 = 0 4((3𝑦 − 1)/2) + 7y − 3 = 0 2(3y − 1) + 7y − 3 = 0 6y − 2 + 7y − 3 = 0 13y − 5 = 0 13y = 5 y = 5/13 