




Subscribe to our Youtube Channel - https://you.tube/teachoo
Last updated at Feb. 3, 2020 by Teachoo
Transcript
Misc 1 Find the values of k for which the line (k – 3) x – (4 – k2)y + k2 – 7k + 6 = 0 is Parallel to the x-axis, Any line parallel to x-axis is of the form y = p where p is constant So, there is no x term Since Line (k – 3) x – (4 – k2) y + k2 – 7k + 6 = 0 is parallel to x-axis Hence, (k − 3)x = 0 k – 3 = 0/𝑥 k – 3 = 0 k = 3 Misc 1 Find the values of k for which the line (k – 3) x – (4 – k2) y + k2 – 7k + 6 = 0 is (b) Parallel to the y-axis, Any line parallel to y-axis is of the form x = p where p is constant So, there is no y term Since line (k – 3) x – (4 – k2) y + k2 – 7k + 6 = 0 is parallel to y-axis Hence, –(4 – k2) y = 0 −(4 − k2) = 0/𝑦 –4 + k2 = 0 k2 = 4 k = ± √4 k = ± 2 Hence k = 2 or −2 Misc 1 Find the values of k for which the line (k – 3) x – (4 – k2) y + k2 – 7k + 6 = 0 is (c) Passing through origin If the line passing through the origin i.e. (0, 0) will satisfy the equation of line Putting x = 0 & y = 0 in equation (k − 3)x − (4 − k2)y + k2 − 7k + 6 = 0 (k − 3)0 − (4 − k2)0 + k2 − 7k + 6 = 0 k2 − 7k + 6 = 0 k2 − 6k − k + 6 = 0 k(k − 6) − 1(k − 6) = 0 k(k − 6) − 1(k − 6) = 0 (k − 1)(k − 6) = 0 So, k = 1 or k = 6
Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4
Misc 5
Misc 6 Important
Misc 7
Misc 8 Important
Misc 9 Important
Misc 10
Misc 11 Important
Misc 12 Important
Misc 13
Misc 14
Misc 15 Important
Misc 16 Important
Misc 17
Misc 18 Important
Misc 19 Important
Misc 20 Important
Misc 21 Important
Misc 22 Important
Misc 23
Misc 24 Important
About the Author