Miscellaneous

Misc 1
Important
You are here

Misc 2 Important Deleted for CBSE Board 2023 Exams

Misc 3 Important

Misc 4

Misc 5

Misc 6 Important

Misc 7

Misc 8 Important

Misc 9 Important

Misc 10

Misc 11 Important

Misc 12 Important

Misc 13

Misc 14

Misc 15 Important

Misc 16 Important

Misc 17

Misc 18 Important

Misc 19 Important

Misc 20 Important

Misc 21 Important

Misc 22 Important

Misc 23

Misc 24 Important

Last updated at Feb. 3, 2020 by Teachoo

Misc 1 Find the values of k for which the line (k – 3) x – (4 – k2)y + k2 – 7k + 6 = 0 is Parallel to the x-axis, Any line parallel to x-axis is of the form y = p where p is constant So, there is no x term Since Line (k – 3) x – (4 – k2) y + k2 – 7k + 6 = 0 is parallel to x-axis Hence, (k − 3)x = 0 k – 3 = 0/𝑥 k – 3 = 0 k = 3 Misc 1 Find the values of k for which the line (k – 3) x – (4 – k2) y + k2 – 7k + 6 = 0 is (b) Parallel to the y-axis, Any line parallel to y-axis is of the form x = p where p is constant So, there is no y term Since line (k – 3) x – (4 – k2) y + k2 – 7k + 6 = 0 is parallel to y-axis Hence, –(4 – k2) y = 0 −(4 − k2) = 0/𝑦 –4 + k2 = 0 k2 = 4 k = ± √4 k = ± 2 Hence k = 2 or −2 Misc 1 Find the values of k for which the line (k – 3) x – (4 – k2) y + k2 – 7k + 6 = 0 is (c) Passing through origin If the line passing through the origin i.e. (0, 0) will satisfy the equation of line Putting x = 0 & y = 0 in equation (k − 3)x − (4 − k2)y + k2 − 7k + 6 = 0 (k − 3)0 − (4 − k2)0 + k2 − 7k + 6 = 0 k2 − 7k + 6 = 0 k2 − 6k − k + 6 = 0 k(k − 6) − 1(k − 6) = 0 k(k − 6) − 1(k − 6) = 0 (k − 1)(k − 6) = 0 So, k = 1 or k = 6