Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Miscellaneous

Misc 1
Important

Misc 2 Important

Misc 3

Misc 4

Misc 5 Important

Misc 6

Misc 7 Important

Misc 8 Important

Misc 9

Misc 10 Important

Misc 11 Important

Misc 12

Misc 13

Misc 14 Important

Misc 15 Important

Misc 16

Misc 17 Important

Misc 18 Important

Misc 19 Important

Misc 20 Important

Misc 21 Important You are here

Misc 22

Misc 23 Important

Question 1 Important Deleted for CBSE Board 2024 Exams

Last updated at May 29, 2023 by Teachoo

Misc 21 A ray of light passing through the point (1, 2) reflects on the x-axis at point A and the reflected ray passes through the point (5, 3). Find the coordinates of A. There is a point A on x-axis on which ray reflects A ray passing through P(1, 2) reflects on point A On reflection, the ray passes through point Q(5, 3) We need to find coordinate of A θ + ∠ MAQ = 90° ∠ MAQ = 90° – θ Also, ∠ MAP = ∠ MAQ = 90 – θ Now, ∠ PAX = ∠ MAP + ∠ MAQ + ∠ QAX = (90 – θ) + (90 – θ) + θ = 180 – θ Now, we find slope of line PA & QA We know that slope of line that passes through points (x1, y1) & (x2, y2) is m = (𝑦_2 − 𝑦_1)/(𝑥_2 − 𝑥_1 ) Line PA Slope of line PA passing through points (1, 2) & (k, 0) is Slope of PA = (0 − 2)/(𝑘 − 1) = ( −2)/(𝑘 − 1) But PA makes angle 180 – θ with positive x-axis Slope of PA = tan (180 – θ) = – tan θ So, – tan θ = ( −2)/(𝑘 − 1) tan θ = ( 2)/(𝑘 − 1) Line QA Slope of line QA passing through points (5, 3) & (k, 0) is Slope of QA = (0 − 3)/(𝑘 − 5) = ( −3)/(𝑘 − 5) But QA makes angle θ with positive x-axis Slope of QA = tan θ So, tan θ = ( −3)/(𝑘 − 5) From (1) & (2) 2/(𝑘 − 1) = ( −3)/(𝑘 − 5) 2(k − 5) = −3(k − 1) 2k − 10 = −3k + 3 2k + 3k = 3 + 10 5k = 13 k = 13/5 Hence point A (𝟏𝟑/𝟓 ", 0" )