Miscellaneous

Misc 1
Important

Misc 2 Important

Misc 3

Misc 4

Misc 5 Important

Misc 6

Misc 7 Important

Misc 8 Important

Misc 9

Misc 10 Important

Misc 11 Important

Misc 12

Misc 13 You are here

Misc 14 Important

Misc 15 Important

Misc 16

Misc 17 Important

Misc 18 Important

Misc 19 Important

Misc 20 Important

Misc 21 Important

Misc 22

Misc 23 Important

Question 1 Important Deleted for CBSE Board 2025 Exams

Last updated at April 16, 2024 by Teachoo

Misc 13 In what ratio, the line joining (–1, 1) and (5, 7) is divided by the line x + y = 4? Let line AB is the line joining the points A(–1, 1) & B(5, 7) & let line CD be x + y = 4 Let line AB be divided by the line CD at point P Let k :1 be the ratio line AB is divided by the line CD We need to find value of k If a point divide any line joining (x1, y1) & (x2, y2) in the ratio of m1 : m2 then co-ordinate of that point is ((𝑚_2 𝑥_2 + 𝑚_1 𝑥_1)/(𝑚_1 + 𝑚_2 ),(𝑚_2 𝑦_(2 ) + 𝑚_1 𝑦_1)/(𝑚_1 + 𝑚_2 )) Point P which divide the line A(–1, 1) & B(5, 7) in k : 1 ratio is Coordinate of point P = ((5𝑘 + ( − 1))/(𝑘 + 1), (7𝑘 + 1)/(𝑘 + 1)) = ((5𝑘 − 1)/(𝑘 + 1), (7𝑘 + 1)/(𝑘 + 1)) ∴ Point P is ((5𝑘 − 1)/(𝑘 + 1), (7𝑘 + 1)/(𝑘 + 1)) Now, point P((5𝑘 − 1)/(𝑘 + 1), (7𝑘 + 1)/(𝑘 + 1)) lies on the line CD So, It will satisfy the equation of line CD So, x + y = 4 Putting x = (5𝑘 − 1)/(𝑘 + 1), y = (7𝑘 + 1)/(𝑘 + 1) ((5𝑘 − 1)/(𝑘 + 1)) + ((7𝑘 + 1)/(𝑘 + 1)) = 4 ((5𝑘 − 1) + (7𝑘 + 1))/(𝑘 + 1) = 4 5k – 1 + 7k + 1 = 4(k + 1) 5k + 7k – 1 + 1 = 4k + 4 12k + 0 = 4k + 4 12k – 4k = 4 8k = 4 k = 4/8 k = 1/2 Hence, Point P divides AB in the ratio of k : 1 = 1/2 : 1 = 2 × 1/2 : 2 × 1 = 1 : 2 Thus , required ratio is 1 : 2