This question is similar to CBSE Class 12 Sample Paper for 2023 Boards

Please check the question hereย 

https://www.teachoo.com/19114/4115/Question-8/category/CBSE-Class-12-Sample-Paper-for-2023-Boards/

ย 

Question 28 (A) - An ant is moving along the vector ๐‘™1โƒ— = ๐‘–ฬ‚ โˆ’ 2๐‘—ฬ‚ - CBSE Class 12 Sample Paper for 2025 Boards

part 2 - Question 28 (A) - CBSE Class 12 Sample Paper for 2025 Boards - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards - Class 12
part 3 - Question 28 (A) - CBSE Class 12 Sample Paper for 2025 Boards - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards - Class 12
part 4 - Question 28 (A) - CBSE Class 12 Sample Paper for 2025 Boards - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards - Class 12

Share on WhatsApp

Transcript

Question 28 (A) An ant is moving along the vector (๐‘™_1 ) โƒ—=ฤฑ ห†โˆ’2ศท ห†+3๐‘˜ ห†. Few sugar crystals are kept along the vector (๐‘™_2 ) โƒ—=3ฤฑ ห†โˆ’2ศท ห†+๐‘˜ ห† which is inclined at an angle ๐œฝ with the vector (๐‘™_1 ) โƒ—. Then find the angle ๐œฝ. Also find the scalar projection of (๐‘™_1 ) โƒ— on (๐‘™_2 ) โƒ—.To find angle, we first find dot product Now, (๐’_๐Ÿ ) โƒ—. (๐’_๐Ÿ ) โƒ—= |(๐’_๐Ÿ ) โƒ— ||(๐’_๐Ÿ ) โƒ— |๐’„๐’๐’” ฮธ Finding dot product & magnitude separately Now, (๐’_๐Ÿ ) โƒ—. (๐’_๐Ÿ ) โƒ— = (๐‘– ฬ‚ โ€“ 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚) . (3๐‘– ฬ‚ โˆ’ 2๐‘— ฬ‚ + ๐‘˜ ฬ‚ ) = (1 ร— 3) + (โ€“2 ร— โ€“2) + (3 ร— 1) = 3 + 4 + 3 = 10 Magnitude of (๐’_๐Ÿ ) โƒ— = โˆš(12+(โˆ’2)2+3 2) |(๐’_๐Ÿ ) โƒ— | = โˆš(1+4+9) = โˆš๐Ÿ๐Ÿ’ Magnitude of (๐’_๐Ÿ ) โƒ— = โˆš(32+(โˆ’2) 2+1 2) |(๐’_๐Ÿ ) โƒ— | = โˆš(9+4+1) Now, putting values in dot product (๐‘™_1 ) โƒ—. (๐‘™_2 ) โƒ—= |(๐‘™_1 ) โƒ— ||(๐‘™_2 ) โƒ— |๐‘๐‘œ๐‘  ๐œƒ 7 = โˆš14 ร— โˆš14 ร— ๐‘๐‘œ๐‘  ๐œƒ Projection of ๐’‚ โƒ— on ๐’ƒ โƒ— = 1/("|" ๐‘ โƒ—"|" ) (๐‘Ž โƒ—. ๐‘ โƒ—) = ๐Ÿ•/โˆš๐Ÿ๐Ÿ’ So, the correct answer is (a) = โˆš๐Ÿ๐Ÿ’ Now, putting values in dot product (๐‘™_1 ) โƒ—. (๐‘™_2 ) โƒ—= |(๐‘™_1 ) โƒ— ||(๐‘™_2 ) โƒ— |๐‘๐‘œ๐‘  ๐œƒ 10 = โˆš๐Ÿ๐Ÿ’ ร— โˆš๐Ÿ๐Ÿ’ ร— ๐’„๐’๐’” ๐œฝ 10 = 14 ๐‘๐‘œ๐‘  ๐œƒ 10/14=cosโก๐œƒ 5/7=cosโก๐œƒ ๐’„๐’๐’”โก๐œฝ=๐Ÿ“/๐Ÿ• โˆด ๐œƒ = cos^(โˆ’๐Ÿ)โกใ€–5/7ใ€— So, angle between two vectors is ใ€–๐’„๐’๐’”ใ€—^(โˆ’๐Ÿ)โกใ€–๐Ÿ“/๐Ÿ•ใ€— Now, We need to find scalar projection of (๐‘™_1 ) โƒ— on (๐‘™_2 ) โƒ—. Projection of ๐’‚ โƒ— on ๐’ƒ โƒ— = 1/("|" ๐‘ โƒ—"|" ) (๐‘Ž โƒ—. ๐‘ โƒ—) = ๐Ÿ•/โˆš๐Ÿ๐Ÿ’ So, the correct answer is (a) So, angle between two vectors is ใ€–๐’„๐’๐’”ใ€—^(โˆ’๐Ÿ)โกใ€–๐Ÿ“/๐Ÿ•ใ€— Now, We need to find scalar projection of (๐‘™_1 ) โƒ— on (๐‘™_2 ) โƒ—. Now, Projection of (๐‘™_1 ) โƒ— on (๐‘™_2 ) โƒ— = ((๐’_๐Ÿ ) โƒ— . (๐’_๐Ÿ ) โƒ—)/|(๐’_๐Ÿ ) โƒ— | = 10/โˆš๐Ÿ๐Ÿ’

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 15 years. He provides courses for Maths, Science and Computer Science at Teachoo