Maximum slope of the curve y = –x 3 + 3x 2 + 9x – 27 is:

(A) 0Β  Β  Β  Β  Β  Β  Β  Β  Β  Β (B) 12

(C) 16Β  Β  Β  Β  Β  Β  Β  Β  Β (D) 32

MCQ Class 12 - Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is: - NCERT Exemplar - MCQs

part 2 - Question 15 - NCERT Exemplar - MCQs - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 3 - Question 15 - NCERT Exemplar - MCQs - Serial order wise - Chapter 6 Class 12 Application of Derivatives

Share on WhatsApp

Transcript

Question 15 Maximum slope of the curve y = –x3 + 3x2 + 9π‘₯ – 27 is: 0 (B) 12 (C) 16 (D) 32 Given y = βˆ’ π‘₯^3 + 3π‘₯^2 + 9π‘₯βˆ’ 27 Now, Slope of the curve =π’…π’š/𝒅𝒙 = βˆ’3π‘₯^2 + 6π‘₯+ 9 We need to find maximum slope Let’s assume π’ˆ(𝒙) = Slope Thus, we need to maximize 𝑔(π‘₯) Maximizing π’ˆ(𝒙) 𝑔(π‘₯) = βˆ’3π‘₯^2 + 6π‘₯+ 9 Finding π’ˆβ€™(𝒙) π’ˆ^β€² (𝒙)=βˆ’6π‘₯+6 =βˆ’πŸ”(π’™βˆ’πŸ) Putting π’ˆ^β€² (𝒙)=𝟎 βˆ’6 (π‘₯βˆ’1) = 0 π‘₯βˆ’1 = 0 𝒙 = 1 Finding sign of g”(𝒙) at x = 1 g”(π‘₯) = βˆ’6 < 0 Since g’’(x) < 0 at x = 1 ∴ g is maximum at x = 1 Finding Maximum Value of g(x) g(1) = "βˆ’3 " γ€–(1)γ€—^2 "+ 6 (1) + 9" = βˆ’3 + 6 + 9 = βˆ’3 + 15 = 12 Hence, Maximum slope = Maximum value of g(x) = 12 So, the correct answer is (B)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo