Which of the following functions is decreasing on (0,Ο€/2)

(A) sin 2xΒ  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β (B) tan x

(C) cos xΒ  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  Β  (D) cos 3x

Β 

This question is similar to

Which of the following functions is decreasing on (0,Ο€/2) - MCQ AOD - NCERT Exemplar - MCQs

part 2 - Question 8 - NCERT Exemplar - MCQs - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 3 - Question 8 - NCERT Exemplar - MCQs - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 4 - Question 8 - NCERT Exemplar - MCQs - Serial order wise - Chapter 6 Class 12 Application of Derivatives
part 5 - Question 8 - NCERT Exemplar - MCQs - Serial order wise - Chapter 6 Class 12 Application of Derivatives

Share on WhatsApp

Transcript

Question 8 Which of the following functions is decreasing on (0,πœ‹/2) (A) sin 2x (B) tan x (C) cos x (D) cos 3x To check decreasing, we check if 𝒇^β€² (𝒙)<𝟎 in (0,πœ‹/2) Option A 𝑓(π‘₯)=𝑠𝑖𝑛 2π‘₯ Differentiating w.r.t. 𝒙 𝒇^β€² (𝒙)=2 π‘π‘œπ‘  2π‘₯ Let 2𝒙 = ΞΈ ∴ f’(π‘₯) = 2 cos ΞΈ When 0 < x < πœ‹/2 , then 0 < ΞΈ < πœ‹ Now, So, sin⁑2π‘₯ is neither increasing nor decreasing in the interval (0,πœ‹/2). Option B 𝑓(π‘₯)=π‘‘π‘Žπ‘› π‘₯ Differentiating w.r.t. 𝒙 f’(𝒙) = sec2 π‘₯ For 0 < ΞΈ < 𝝅/𝟐 cos ΞΈ > 0 Putting πœƒ=2π‘₯ cos⁑2π‘₯>0 2 cos⁑2π‘₯>0 ∴ 𝒇^β€² (𝒙)>𝟎 For 𝝅/𝟐 < ΞΈ < 𝝅 cos ΞΈ < 0 Putting πœƒ=2π‘₯ cos⁑2π‘₯<0 2 cos⁑2π‘₯<0 ∴ 𝒇^β€² (𝒙)<𝟎 As square of any number is always positive So, f’(π‘₯) > 0 for all values of π‘₯ ∴ f is strictly increasing on (0 , πœ‹/2). Option C 𝑓(π‘₯)=π‘π‘œπ‘  π‘₯ Differentiating w.r.t. 𝒙 𝒇^β€² (𝒙)=βˆ’π‘ π‘–π‘› π‘₯ Since, sin 𝒙 > 0 for π‘₯ ∈ (0 , πœ‹/2) So, – sin 𝒙 < 0 for π‘₯ ∈ (0 , πœ‹/2) ∴ f’ (π‘₯) < 0 for π‘₯ ∈ (0 , πœ‹/2) So, f is strictly decreasing in (0 , πœ‹/2). Option D 𝑓(π‘₯)=π‘π‘œπ‘  3π‘₯ Differentiating w.r.t. 𝒙 f’ (𝒙) = –3 sin 3π‘₯ Let 3𝒙 = ΞΈ ∴ f’ (π‘₯) = –3 sin ΞΈ When 0 < x < πœ‹/2 , then 0 < ΞΈ < πŸ‘π…/𝟐 For 0 < ΞΈ < 𝝅 sin ΞΈ > 0 Putting πœƒ=3π‘₯ sin⁑3π‘₯>0 βˆ’3 sin⁑3π‘₯<0 ∴ 𝒇^β€² (𝒙)<𝟎 For 𝝅 < ΞΈ < πŸ‘π…/𝟐 sin ΞΈ < 0 Putting πœƒ=3π‘₯ sin⁑3π‘₯<0 βˆ’3 sin⁑3π‘₯>0 ∴ 𝒇^β€² (𝒙)>𝟎 So, cos 3π‘₯ is neither increasing nor decreasing in the interval (0,πœ‹/2). Hence, only 𝒄𝒐𝒔 𝒙 is decreasing in the interval (0,πœ‹/2). So, the correct answer is (C).

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo