


Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 5.3
Ex 5.3, 1 (ii)
Ex 5.3, 1 (iii) Important
Ex 5.3, 1 (iv)
Ex 5.3, 2 (i)
Ex 5.3, 2 (ii)
Ex 5.3, 2 (iii) Important
Ex 5.3, 3 (i)
Ex 5.3, 3 (ii)
Ex 5.3, 3 (iii)
Ex 5.3, 3 (iv) Important
Ex 5.3, 3 (v)
Ex 5.3, 3 (vi) Important You are here
Ex 5.3, 3 (vii)
Ex 5.3, 3 (viii) Important
Ex 5.3, 3 (ix)
Ex 5.3, 3 (x)
Ex 5.3, 4
Ex 5.3, 5
Ex 5.3, 6 Important
Ex 5.3, 7
Ex 5.3, 8
Ex 5.3, 9
Ex 5.3, 10 (i)
Ex 5.3, 10 (ii) Important
Ex 5.3, 11 Important
Ex 5.3, 12
Ex 5.3, 13
Ex 5.3, 14 Important
Ex 5.3, 15
Ex 5.3, 16 Important
Ex 5.3, 17
Ex 5.3, 18 Important
Ex 5.3, 19 Important
Ex 5.3, 20 Important
Last updated at May 29, 2023 by Teachoo
Ex 5.3, 3 In an AP (vi) Given a = 2, d = 8, Sn = 90, find n and an. Given a = 2, d = 8, Sn = 90 We can use formula Sn = π/2 (2π+(πβ1)π) Putting a = 2, d = 8, Sn = 90 90 = π/2 (2 Γ 2+(πβ1) Γ 8) 90 = π/2 (4+8πβ8) 90 Γ 2 =π(4+8πβ8) 180 = n (8n β 4) 180 = 8n2 β 4n β180 + 8n2 β 4n = 0 8n2 β 4n β 180 = 0 8n2 β 4n β 180 = 0 4 (2n2 β n β 45) = 0 2n2 β n β 45 = 0 2n2 β 10n + 9n β 45 = 0 2n(n β 5) + 9(n β 5) = 0 (2n + 9) (n β 5) = 0 2n + 9 = 0 2n = β9 n = (βπ)/π n β 5 = 0 n = 5 Therefore, n = 5 & n = (β9)/2 But n cannot be in fraction, So, n = 5 We need to find an, i.e. a5 We know that an = a + (n β 1)d Putting a = 2, n = 5, d = 8 a5 = 2 + (5 β 1) 8 a5 = 2 + (4)8 a5 = 2 + 32 a5 = 34 Therefore, n = 5 & a5 = 34