Ex 5.3
Ex 5.3, 1 (ii)
Ex 5.3, 1 (iii) Important
Ex 5.3, 1 (iv)
Ex 5.3, 2 (i)
Ex 5.3, 2 (ii)
Ex 5.3, 2 (iii) Important
Ex 5.3, 3 (i)
Ex 5.3, 3 (ii)
Ex 5.3, 3 (iii)
Ex 5.3, 3 (iv) Important
Ex 5.3, 3 (v)
Ex 5.3, 3 (vi) Important You are here
Ex 5.3, 3 (vii)
Ex 5.3, 3 (viii) Important
Ex 5.3, 3 (ix)
Ex 5.3, 3 (x)
Ex 5.3, 4
Ex 5.3, 5
Ex 5.3, 6 Important
Ex 5.3, 7
Ex 5.3, 8
Ex 5.3, 9
Ex 5.3, 10 (i)
Ex 5.3, 10 (ii) Important
Ex 5.3, 11 Important
Ex 5.3, 12
Ex 5.3, 13
Ex 5.3, 14 Important
Ex 5.3, 15
Ex 5.3, 16 Important
Ex 5.3, 17
Ex 5.3, 18 Important
Ex 5.3, 19 Important
Ex 5.3, 20 Important
Last updated at April 16, 2024 by Teachoo
Ex 5.3, 3 In an AP (vi) Given a = 2, d = 8, Sn = 90, find n and an. Given a = 2, d = 8, Sn = 90 We can use formula Sn = 𝑛/2 (2𝑎+(𝑛−1)𝑑) Putting a = 2, d = 8, Sn = 90 90 = 𝑛/2 (2 × 2+(𝑛−1) × 8) 90 = 𝑛/2 (4+8𝑛−8) 90 × 2 =𝑛(4+8𝑛−8) 180 = n (8n – 4) 180 = 8n2 – 4n –180 + 8n2 – 4n = 0 8n2 – 4n – 180 = 0 8n2 – 4n – 180 = 0 4 (2n2 – n – 45) = 0 2n2 – n – 45 = 0 2n2 – 10n + 9n – 45 = 0 2n(n – 5) + 9(n – 5) = 0 (2n + 9) (n − 5) = 0 2n + 9 = 0 2n = –9 n = (−𝟗)/𝟐 n – 5 = 0 n = 5 Therefore, n = 5 & n = (−9)/2 But n cannot be in fraction, So, n = 5 We need to find an, i.e. a5 We know that an = a + (n – 1)d Putting a = 2, n = 5, d = 8 a5 = 2 + (5 – 1) 8 a5 = 2 + (4)8 a5 = 2 + 32 a5 = 34 Therefore, n = 5 & a5 = 34