Ex 5.3

Ex 5.3, 1 (i)

Ex 5.3, 1 (ii)

Ex 5.3, 1 (iii) Important

Ex 5.3, 1 (iv) You are here

Ex 5.3, 2 (i)

Ex 5.3, 2 (ii)

Ex 5.3, 2 (iii) Important

Ex 5.3, 3 (i)

Ex 5.3, 3 (ii)

Ex 5.3, 3 (iii)

Ex 5.3, 3 (iv) Important

Ex 5.3, 3 (v)

Ex 5.3, 3 (vi) Important

Ex 5.3, 3 (vii)

Ex 5.3, 3 (viii) Important

Ex 5.3, 3 (ix)

Ex 5.3, 3 (x)

Ex 5.3, 4

Ex 5.3, 5

Ex 5.3, 6 Important

Ex 5.3, 7

Ex 5.3, 8

Ex 5.3, 9

Ex 5.3, 10 (i)

Ex 5.3, 10 (ii) Important

Ex 5.3, 11 Important

Ex 5.3, 12

Ex 5.3, 13

Ex 5.3, 14 Important

Ex 5.3, 15

Ex 5.3, 16 Important

Ex 5.3, 17

Ex 5.3, 18 Important

Ex 5.3, 19 Important

Ex 5.3, 20 Important

Chapter 5 Class 10 Arithmetic Progressions

Serial order wise

Last updated at April 16, 2024 by Teachoo

Ex 5.3, 1 Find the sum of the following APs. (iv) 1/15, 1/12, 1/10 ,………, to 11 terms 1/15, 1/12, 1/10, ….. to 11 terms We know that Sum = 𝑛/2 (2a + (n – 1) d) Here n = 11 , a = 1/15 & d = 1/12 – 1/15 = (15 − 12)/(12 × 15) = 3/180 = 1/60 Putting values in formula Sum = 𝒏/𝟐 (2a + (n – 1) d) = 11/2 ("2 " ×" " 1/15 " + (11 – 1) " ×" " 1/60) = 11/2 (2/15 " + 10 " × 1/60) = 11/2 (2/15 " + " 10/60) = 11/2 ((2 × 4 + 10)/60) = 11/2 ((8 + 10)/60) = 11/2 × 18/60 = 11 × 9/60 = 11 × 3/20 = 𝟑𝟑/𝟐𝟎