Check sibling questions


Transcript

Question 6 From the differential equation of the family of circles in the second quadrant and touching the coordinate axes . Drawing figure : Let C be the family of circles in second quadrant touching coordinate. Let radius be 𝑎 ∴ Center of circle = (−𝑎, 𝑎) Equation representing family C is x−(−𝑎)﷯﷮2﷯+ 𝑦−𝑎﷯﷮2﷯= 𝑎﷮2﷯ x + 𝑎﷯﷮2﷯+ 𝑦−𝑎﷯﷮2﷯= 𝑎﷮2﷯ 𝑥2 + 𝑎2 + 2ax + y2 + 𝑎2 − 2𝑎y = 𝑎2 𝑥2 + 𝑦2 + 2ax − 2ay + 2𝑎2 = 𝑎2 𝑥2 + y2 + 2𝑎x − 2𝑎y + 𝑎2 = 0 Differentiate w.r.t x 2x + 2y. 𝑑𝑦﷮𝑑𝑥﷯ + 2𝑎 − 2a 𝑑𝑦﷮𝑑𝑥﷯ + 0 = 0 x + y. 𝑑𝑦﷮𝑑𝑥﷯ + 𝑎 − 𝑎𝑑𝑦﷮𝑑𝑥﷯ = 0 x + y. 𝑑𝑦﷮𝑑𝑥﷯ = − 𝑎 + 𝑎𝑑𝑦﷮𝑑𝑥﷯ x + y 𝑑𝑦﷮𝑑𝑥﷯ = 𝑎 𝑑𝑦﷮𝑑𝑥﷯ −1﷯ 𝑎 = 𝑥 + 𝑦 𝑑𝑦﷮𝑑𝑥﷯ ﷮ 𝑑𝑦﷮𝑑𝑥﷯ − 1﷯ 𝑎 = 𝒙 + 𝒚 𝒚﷮′﷯ ﷮ 𝒚﷮′﷯ − 𝟏﷯ Putting value of a in (1) x−(−𝑎)﷯﷮2﷯+ 𝑦−𝑎﷯﷮2﷯= 𝑎﷮2﷯ x− − 𝑥 + 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷯﷮2﷯+ 𝑦− 𝑥 + 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯= 𝑥 + 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯ x+ 𝑥 + 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯+ 𝑦− 𝑥 + 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯= 𝑥 + 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯ 𝑥 𝑦﷮′﷯− 1﷯ + 𝑥 + 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯+ 𝑦 𝑦﷮′﷯− 1﷯ − 𝑥 − 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯= 𝑥 + 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯ 𝑥 𝑦﷮′﷯ − 𝑥 + 𝑥 + 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯+ −𝑥 − 𝑦 ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯= 𝑥 + 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯ (𝑥 + 𝑦) 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯+ −(𝑥 + 𝑦) ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯= 𝑥 + 𝑦 𝑦﷮′﷯ ﷮ 𝑦﷮′﷯ − 1﷯﷯﷮2﷯ (𝑥 + 𝑦) ﷮2﷯ ( 𝑦﷮′﷯)﷮2﷯+ (𝑥 + 𝑦) ﷮2﷯= 𝑥 + 𝑦 𝑦﷮′﷯﷯﷮2﷯ (𝒙 + 𝒚) ﷮𝟐﷯ ( 𝒚﷮′﷯)﷮𝟐﷯ + 𝟏﷯= 𝒙 + 𝒚 𝒚﷮′﷯﷯﷮𝟐﷯ which is the required differential equation

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo