Check sibling questions


Transcript

Example 12 Show that the differential equation 2๐‘ฆ๐‘’^(๐‘ฅ/๐‘ฆ) ๐‘‘๐‘ฅ+(๐‘ฆโˆ’2๐‘ฅ๐‘’^(๐‘ฅ/๐‘ฆ) )๐‘‘๐‘ฆ=0 is homogeneous and find its particular solution , given that, ๐‘ฅ=0 when ๐‘ฆ=1 2๐‘ฆ๐‘’^(๐‘ฅ/๐‘ฆ) ๐‘‘๐‘ฅ+(๐‘ฆโˆ’2๐‘ฅ๐‘’^(๐‘ฅ/๐‘ฆ) )๐‘‘๐‘ฆ = 0 Step 1: Finding ๐‘‘๐‘ฅ/๐‘‘๐‘ฆ 2๐‘ฆ๐‘’^(๐‘ฅ/๐‘ฆ) ๐‘‘๐‘ฅ+(๐‘ฆโˆ’2๐‘ฅ๐‘’^(๐‘ฅ/๐‘ฆ) )๐‘‘๐‘ฆ=0 2๐‘ฆ๐‘’^(๐‘ฅ/๐‘ฆ) ๐‘‘๐‘ฅ=โˆ’(๐‘ฆโˆ’2๐‘ฅ๐‘’^(๐‘ฅ/๐‘ฆ) )๐‘‘๐‘ฆ 2๐‘ฆ๐‘’^(๐‘ฅ/๐‘ฆ) ๐‘‘๐‘ฅ=(2๐‘ฅ๐‘’^(๐‘ฅ/๐‘ฆ)โˆ’๐‘ฆ)๐‘‘๐‘ฆ Since the equation is in the form ๐‘ฅ/๐‘ฆ , we will take ๐‘‘๐‘ฅ/๐‘‘๐‘ฆ Instead of ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ ๐’…๐’™/๐’…๐’š=((๐Ÿ๐’™๐’†^(๐’™/๐’š) โˆ’ ๐’š))/(๐Ÿ๐’š๐’†^(๐’™/๐’š) ) Step 2: Put F(๐‘ฅ , ๐‘ฆ)=๐‘‘๐‘ฅ/๐‘‘๐‘ฆ and find F(๐œ†๐‘ฅ ,๐œ†๐‘ฆ) F(๐‘ฅ , ๐‘ฆ)= (2๐‘ฅ๐‘’^(๐‘ฅ/๐‘ฆ) โˆ’ ๐‘ฆ)/(2๐‘ฆ๐‘’^(๐‘ฅ/๐‘ฆ) ) Finding F(๐€๐’™ ,๐€๐’š) F(๐œ†๐‘ฅ ,๐œ†๐‘ฆ)=(2 (๐œ†๐‘ฅ) ใ€– ๐‘’ใ€—^(๐œ†๐‘ฅ/๐œ†๐‘ฆ โˆ’๐œ†๐‘ฆ))/(2๐œ†๐‘ฆ ใ€– ๐‘’ใ€—^(๐œ†๐‘ฅ/๐œ†๐‘ฆ ) )=๐œ†(2๐‘ฅ๐‘’^(๐‘ฅ/๐‘ฆ) โˆ’ ๐‘ฆ)/(๐œ† . 2๐‘ฆ ๐‘’^(๐‘ฅ/๐‘ฆ) ) =(2๐‘ฅ๐‘’^(๐‘ฅ/๐‘ฆ) โˆ’ ๐‘ฆ)/(2๐‘ฆ ๐‘’^(๐‘ฅ/๐‘ฆ) ) = F (๐’™ , ๐’š) So, F(๐œ†๐‘ฅ ,๐œ†๐‘ฆ)= F(๐‘ฅ , ๐‘ฆ) = ๐œ†ยฐ F(๐‘ฅ , ๐‘ฆ) Thus , F(๐‘ฅ ,๐‘ฆ) is a homogeneous function of degree zero Therefore given differential equation is homogeneous differential equation Step 3: Solving ๐‘‘๐‘ฅ/๐‘‘๐‘ฆ by Putting ๐‘ฅ=๐‘ฃ๐‘ฆ ๐‘‘๐‘ฅ/๐‘‘๐‘ฆ=(2๐‘ฅ ๐‘’^(๐‘ฅ/๐‘ฆ) โˆ’ ๐‘ฆ)/(2๐‘ฆ ๐‘’^(๐‘ฅ/๐‘ฆ) ) Put ๐’™=๐’—๐’š Diff. w.r.t. ๐‘ฆ ๐‘‘๐‘ฅ/๐‘‘๐‘ฆ=๐‘‘/๐‘‘๐‘ฆ (๐‘ฃ๐‘ฆ) ๐‘‘๐‘ฅ/๐‘‘๐‘ฆ=๐‘ฆ . ๐‘‘๐‘ฃ/๐‘‘๐‘ฆ+๐‘ฃ ๐‘‘๐‘ฆ/๐‘‘๐‘ฆ ๐’…๐’™/๐’…๐’š=๐’š . ๐’…๐’—/๐’…๐’š+๐’— Putting values of ๐‘‘๐‘ฅ/๐‘‘๐‘ฆ and x in (1) ๐‘‘๐‘ฅ/๐‘‘๐‘ฆ=(2๐‘ฅ๐‘’^(๐‘ฅ/๐‘ฆ) โˆ’ ๐‘ฆ)/(2๐‘ฆ ๐‘’^(๐‘ฅ" " /๐‘ฆ) ) ๐’—+๐’š ๐’…๐’—/๐’…๐’š=(๐Ÿ๐’— ๐’†^๐’— โˆ’ ๐Ÿ)/(๐Ÿใ€– ๐’†ใ€—^๐’— ) ๐‘ฆ ๐‘‘๐‘ฃ/๐‘‘๐‘ฆ=(2๐‘ฃ ๐‘’^๐‘ฃ โˆ’ 1)/(2ใ€– ๐‘’ใ€—^๐‘ฃ )โˆ’๐‘ฃ (๐‘ฆ ๐‘‘๐‘ฃ)/๐‘‘๐‘ฆ=(2๐‘ฃ๐‘’^๐‘ฃ โˆ’ 1 โˆ’ 2๐‘ฃ๐‘’^๐‘ฃ)/(2ใ€– ๐‘’ใ€—^๐‘ฃ ) ๐‘ฆ ๐‘‘๐‘ฃ/๐‘‘๐‘ฆ=(โˆ’1)/(2ใ€– ๐‘’ใ€—^๐‘ฃ ) ๐Ÿใ€– ๐’†ใ€—^๐’— ๐’…๐’—=(โˆ’๐’…๐’š)/( ๐’š) Integrating Both Sides โˆซ1โ–’ใ€–2ใ€– ๐‘’ใ€—^๐‘ฃ ๐‘‘๐‘ฃใ€—=โˆซ1โ–’(โˆ’๐‘‘๐‘ฆ)/( ๐‘ฆ) ๐Ÿใ€– ๐’†ใ€—^๐’—=โˆ’๐ฅ๐จ๐ โก|๐’š|+๐’„ Putting back ๐‘ฃ=๐‘ฅ/๐‘ฆ 2๐‘’^(๐‘ฅ/๐‘ฆ)=โˆ’๐‘™๐‘œ๐‘”|๐‘ฆ|+๐‘ 2๐‘’^(๐‘ฅ/๐‘ฆ)+๐‘™๐‘œ๐‘”|๐‘ฆ|=๐‘ Given that at ๐’™=๐ŸŽ , ๐’š=๐Ÿ Putting ๐‘ฅ=0 and ๐‘ฆ=1 in (2) 2๐‘’^(0/1)โˆ’๐‘™๐‘œ๐‘”|1|=๐‘ 2 ร—1+0=๐‘ ๐’„=๐Ÿ Put Value of ๐‘ in (2) i.e., 2๐‘’^(๐‘ฅ/๐‘ฆ)+๐‘™๐‘œ๐‘”|๐‘ฆ|=๐ถ ๐Ÿ๐’†^(๐’™/๐’š)+๐’๐’๐’ˆ|๐’š|=๐Ÿ" " is the particular solution of given differential equation

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo