Check sibling questions


Transcript

Example 6 Find the particular solution of the differential equation ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=โˆ’4๐‘ฅ๐‘ฆ^2 given that ๐‘ฆ=1 , ๐‘คโ„Ž๐‘’๐‘› ๐‘ฅ=0Given differential equation , ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=โˆ’4๐‘ฅ๐‘ฆ^2 ๐’…๐’š/๐’š^๐Ÿ = (โˆ’4 x) dx Integrating both sides. โˆซ1โ–’๐‘‘๐‘ฆ/๐‘ฆ^2 = โˆซ1โ–’ใ€–โˆ’4๐‘ฅ ๐‘‘๐‘ฅใ€— โˆซ1โ–’๐’…๐’š/๐’š^๐Ÿ = โˆ’4 โˆซ1โ–’ใ€–๐’™ ๐’…๐’™ใ€— ๐‘ฆ^(โˆ’2+1)/(โˆ’2+1) = โˆ’4.๐‘ฅ^2/2 + c โˆ’ ๐Ÿ/๐’š = โ€“2x2 + c y = (โˆ’1)/(โˆ’2๐‘ฅ2 + ๐‘) y = (โˆ’1)/(โˆ’(2๐‘ฅ2 โˆ’ ๐‘)) y = ๐Ÿ/(๐Ÿ๐’™๐Ÿ โˆ’ ๐’„) Given that at x = 0, y = 1 Putting x = 0, y = 1, in (1) 1 = 1/(2(0)^2 ) โˆ’ c 1 = 1/(โˆ’๐ถ) c = โˆ’1 Putting c = โˆ’1 in (1) y = 1/(2๐‘ฅ^2 ) โˆ’(โˆ’1) y = ๐Ÿ/(๐Ÿ๐’™^๐Ÿ + ๐Ÿ) Hence, the particular solution of the equation is y = ๐Ÿ/(๐Ÿ๐’™^๐Ÿ + ๐Ÿ)

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo