Check sibling questions


Transcript

Question 3 Form the differential equation representing the family of ellipses having foci on ๐‘ฅโˆ’๐‘Ž๐‘ฅ๐‘–๐‘  is center at the origin. Ellipse whose foci is on x-axis & center at origin is ๐‘ฅ^2/๐‘Ž^2 +๐‘ฆ^2/๐‘^2 =1 Differentiating both sides w.r.t. ๐‘ฅ ๐‘‘/๐‘‘๐‘ฅ [๐‘ฅ^2/๐‘Ž^2 +๐‘ฆ^2/๐‘^2 ]=๐‘‘(1)/๐‘‘๐‘ฅ 1/๐‘Ž^2 ร—(ใ€–๐‘‘(๐‘ฅใ€—^2))/๐‘‘๐‘ฅ+1/๐‘^2 ร—(ใ€–๐‘‘(๐‘ฆใ€—^2))/๐‘‘๐‘ฅ=0 Since it has two variables, we will differentiate twice ๐‘ฅ^2/๐‘Ž^2 +๐‘ฆ^2/๐‘^2 =1 1/๐‘Ž^2 ร—2๐‘ฅ+1/๐‘^2 ร—(2๐‘ฆ . ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ)=0 2๐‘ฅ/๐‘Ž^2 +2๐‘ฆ/๐‘^2 ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=0 2๐‘ฆ/๐‘^2 ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=(โˆ’2๐‘ฅ)/ใ€– ๐‘Žใ€—^2 ๐‘ฆ/๐‘^2 ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=(โˆ’๐‘ฅ)/ใ€– ๐‘Žใ€—^2 ๐‘ฆ/๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ= (โˆ’๐‘^2)/ใ€– ๐‘Žใ€—^2 ๐‘ฆ/๐‘ฅ ๐‘ฆ^โ€ฒ= (โˆ’๐‘^2)/ใ€– ๐‘Žใ€—^2 Again differentiating both sides ๐‘‘(๐‘ฆ/๐‘ฅ)/๐‘‘๐‘ฅ. ๐‘ฆ^โ€ฒ+๐‘ฆ/๐‘ฅ (๐‘‘(๐‘ฆ^โ€ฒ))/๐‘‘๐‘ฅ=๐‘‘/๐‘‘๐‘ฅ ((โˆ’ ๐‘^2)/( ๐‘Ž^2 )) [๐‘‘๐‘ฆ/๐‘‘๐‘ฅ . ๐‘ฅ โˆ’ ๐‘ฆ .๐‘‘๐‘ฅ/๐‘‘๐‘ฅ]/๐‘ฅ^2 ๐‘ฆ^โ€ฒ +๐‘ฆ/๐‘ฅ ร—๐‘ฆโ€ฒโ€ฒ=0 [๐‘ฆ^โ€ฒ ๐‘ฅ โˆ’ ๐‘ฆ]/๐‘ฅ^2 ๐‘ฆ^โ€ฒ +๐‘ฆ/๐‘ฅร—๐‘ฆโ€ฒโ€ฒ=0 Multiplying x2 both sides ๐‘ฅ^2ร—[๐‘ฆ^โ€ฒ ๐‘ฅ โˆ’ ๐‘ฆ]/๐‘ฅ^2 ๐‘ฆ^โ€ฒ +๐‘ฅ^2ร—๐‘ฆ/๐‘ฅร—๐‘ฆโ€ฒโ€ฒ=๐‘ฅ^2ร—0 [๐‘ฆ^โ€ฒ ๐‘ฅโˆ’๐‘ฆ] ๐‘ฆ^โ€ฒ+๐‘ฅ๐‘ฆ๐‘ฆ^โ€ฒโ€ฒ=0 ใ€–ใ€–๐‘ฅ๐‘ฆใ€—^โ€ฒใ€—^2โˆ’๐‘ฆ๐‘ฆ^โ€ฒ+๐‘ฅ๐‘ฆ๐‘ฆ^โ€ฒโ€ฒ=0 ๐‘ฅ๐‘ฆ๐‘ฆ^โ€ฒโ€ฒ+ใ€–ใ€–๐‘ฅ๐‘ฆใ€—^โ€ฒใ€—^2โˆ’๐‘ฆ๐‘ฆ^โ€ฒ=0 ๐’™๐’š (๐’…^๐Ÿ ๐’š)/(๐’…๐’™^๐Ÿ ) +๐’™(๐’…๐’š/๐’…๐’™)^๐Ÿโˆ’๐’š ๐’…๐’š/๐’…๐’™=๐ŸŽ is the required differential equation

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo