Check sibling questions


Transcript

Misc 23 If ๐‘ฆ=๐‘’^(ใ€–๐‘Ž ๐‘๐‘œ๐‘ ใ€—^(โˆ’1) ๐‘ฅ) , โ€“ 1 โ‰ค ๐‘ฅ โ‰ค 1, show that (1โˆ’๐‘ฅ^2 ) (๐‘‘^2 ๐‘ฆ)/ใ€–๐‘‘๐‘ฅใ€—^2 โˆ’๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ โˆ’ ๐‘Ž2 ๐‘ฆ =0 . ๐‘ฆ=๐‘’^(ใ€–๐‘Ž ๐‘๐‘œ๐‘ ใ€—^(โˆ’1) ๐‘ฅ) Differentiating ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ. ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘‘(๐‘’^(ใ€–๐‘Ž ๐‘๐‘œ๐‘ ใ€—^(โˆ’1) ๐‘ฅ" " ) )/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘’^(ใ€–๐‘Ž ๐‘๐‘œ๐‘ ใ€—^(โˆ’1) ๐‘ฅ" " ) ร— ๐‘‘(ใ€–๐‘Ž ๐‘๐‘œ๐‘ ใ€—^(โˆ’1) ๐‘ฅ)/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘’^(ใ€–๐‘Ž ๐‘๐‘œ๐‘ ใ€—^(โˆ’1) ๐‘ฅ" " ) ร— ๐‘Ž ((โˆ’1)/โˆš(1 โˆ’ ๐‘ฅ^2 )) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (โˆ’๐‘Ž ๐‘’^(ใ€–๐‘Ž ๐‘๐‘œ๐‘ ใ€—^(โˆ’1) ๐‘ฅ" " ))/โˆš(1 โˆ’ ๐‘ฅ^2 ) โˆš(1 โˆ’ ๐‘ฅ^2 ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = โˆ’๐‘Ž๐‘’^(ใ€–๐‘Ž ๐‘๐‘œ๐‘ ใ€—^(โˆ’1) ๐‘ฅ" " ) โˆš(1 โˆ’ ๐‘ฅ^2 ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = โˆ’๐‘Ž๐‘ฆ Since we need to prove (1โˆ’๐‘ฅ^2 ) (๐‘‘^2 ๐‘ฆ)/ใ€–๐‘‘๐‘ฅใ€—^2 โˆ’ ๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ โˆ’๐‘Ž2 ๐‘ฆ =0 Squaring (1) both sides (โˆš(1 โˆ’ ๐‘ฅ^2 ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ)^2 = (โˆ’๐‘Ž๐‘ฆ)^2 (1โˆ’๐‘ฅ^2 ) (๐‘ฆ^โ€ฒ )^2 = ๐‘Ž^2 ๐‘ฆ^2 Differentiating again w.r.t x ๐‘‘((1 โˆ’ ๐‘ฅ^2 ) (๐‘ฆ^โ€ฒ )^2 )/๐‘‘๐‘ฅ = (d(๐‘Ž^2 ๐‘ฆ^2))/๐‘‘๐‘ฅ ๐‘‘((1 โˆ’ ๐‘ฅ^2 ) (๐‘ฆ^โ€ฒ )^2 )/๐‘‘๐‘ฅ = ๐‘Ž^2 (๐‘‘(๐‘ฆ^2))/๐‘‘๐‘ฅ ๐‘‘((1 โˆ’ ๐‘ฅ^2 ) (๐‘ฆ^โ€ฒ )^2 )/๐‘‘๐‘ฅ = ๐‘Ž^2 ร— 2๐‘ฆ ร—๐‘‘๐‘ฆ/๐‘‘๐‘ฅ ๐‘‘(1 โˆ’ ๐‘ฅ^2 )/๐‘‘๐‘ฅ (๐‘ฆ^โ€ฒ )^2+(1 โˆ’ ๐‘ฅ^2 ) ๐’…((๐’š^โ€ฒ )^๐Ÿ )/๐’…๐’™ = ๐‘Ž^2 ร— 2๐‘ฆ๐‘ฆ^โ€ฒ (โˆ’2๐‘ฅ)(๐‘ฆ^โ€ฒ )^2+(1 โˆ’ ๐‘ฅ^2 )(๐Ÿ๐’š^โ€ฒ ร— ๐’…(๐’š^โ€ฒ )/๐’…๐’™) = ๐‘Ž^2 ร— 2๐‘ฆ๐‘ฆ^โ€ฒ (โˆ’2๐‘ฅ)(๐‘ฆ^โ€ฒ )^2+(1 โˆ’ ๐‘ฅ^2 )(๐Ÿ๐’š^โ€ฒ ร— ๐’š^โ€ฒโ€ฒ ) = ๐‘Ž^2 ร— 2๐‘ฆ๐‘ฆ^โ€ฒ Dividing both sides by ๐Ÿ๐’š^โ€ฒ โˆ’๐‘ฅ๐‘ฆ^โ€ฒ+(1 โˆ’ ๐‘ฅ^2 ) ๐‘ฆ^โ€ฒโ€ฒ = ๐‘Ž^2 ร— ๐‘ฆ โˆ’๐‘ฅ๐‘ฆ^โ€ฒ+(1 โˆ’ ๐‘ฅ^2 ) ๐‘ฆ^โ€ฒโ€ฒ = ๐‘Ž^2 ๐‘ฆ (๐Ÿ โˆ’ ๐’™^๐Ÿ ) ๐’š^โ€ฒโ€ฒโˆ’๐’™๐’š^โ€ฒโˆ’๐’‚^๐Ÿ ๐’š=๐ŸŽ Hence proved

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo