Check sibling questions

 


Transcript

Misc 21 (Method 1) If ๐‘ฆ = |โ–ˆ( ๐‘“(๐‘ฅ) ๐‘”(๐‘ฅ) โ„Ž(๐‘ฅ)@๐‘™ ๐‘š ๐‘›@๐‘Ž ๐‘ Here ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = |โ–ˆ( ๐‘“โ€ฒ(๐‘ฅ) ๐‘”โ€ฒ(๐‘ฅ) โ„Žโ€ฒ(๐‘ฅ)@๐‘™ ๐‘š ๐‘›@๐‘Ž ๐‘ ๐‘ )| Expanding determinant ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = |๐‘“โ€ฒ(๐‘ฅ)| |โ– 8(๐‘š&๐‘›@๐‘&๐‘)||โˆ’๐‘”โ€ฒ(๐‘ฅ) | |โ– 8(๐‘™&๐‘›@๐‘Ž&๐‘)||1+ โ„Žโ€ฒ(๐‘ฅ) ||โ– 8(๐‘™&๐‘š@๐‘Ž&๐‘)| ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘“โ€ฒ(๐‘ฅ) (๐‘š๐‘ โˆ’๐‘๐‘›)โˆ’๐‘”โ€ฒ(๐‘›) (๐‘™๐‘โˆ’๐‘Ž๐‘›) + โ„Žโ€ฒ(๐‘›) (๐‘™๐‘โˆ’๐‘Ž๐‘š) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (๐‘š๐‘ โˆ’๐‘๐‘›) ๐‘“โ€ฒ(๐‘ฅ)โˆ’(๐‘™๐‘โˆ’๐‘Ž๐‘›)๐‘”โ€ฒ(๐‘ฅ) +(๐‘™๐‘โˆ’๐‘Ž๐‘š) โ„Žโ€ฒ(๐‘ฅ) Hence We need to prove that ๐’…๐’š/๐’…๐’™ = (๐‘š๐‘ โˆ’๐‘๐‘›) ๐‘“โ€ฒ(๐‘ฅ)โˆ’(๐‘™๐‘โˆ’๐‘Ž๐‘›)๐‘”โ€ฒ(๐‘ฅ) +(๐‘™๐‘โˆ’๐‘Ž๐‘š) โ„Žโ€ฒ(๐‘ฅ) Now, ๐‘ฆ = |โ–ˆ( ๐‘“(๐‘ฅ) ๐‘”(๐‘ฅ) โ„Ž(๐‘ฅ)@๐‘™ ๐‘š ๐‘›@๐‘Ž ๐‘ ๐‘ )| Expanding determinant ๐‘ฆ = ๐‘“(๐‘ฅ)|โ– 8(๐‘š&๐‘›@๐‘&๐‘)|โˆ’ ๐‘”(๐‘ฅ)|โ– 8(๐‘™&๐‘›@๐‘Ž&๐‘)|+ โ„Ž(๐‘ฅ)|โ– 8(๐‘™&๐‘š@๐‘Ž&๐‘)| ๐‘ฆ = ๐‘“(๐‘ฅ) (๐‘š๐‘ โˆ’๐‘๐‘›)โˆ’๐‘”(๐‘›) (๐‘™๐‘โˆ’๐‘Ž๐‘›) + โ„Ž(๐‘›) (๐‘™๐‘โˆ’๐‘Ž๐‘š) ๐‘ฆ = (๐‘š๐‘ โˆ’๐‘๐‘›) ๐‘“(๐‘ฅ)โˆ’(๐‘™๐‘โˆ’๐‘Ž๐‘›)๐‘”(๐‘ฅ)" +" (๐‘™๐‘โˆ’๐‘Ž๐‘š) โ„Ž(๐‘ฅ)" " Differentiating ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ. ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘‘((๐‘š๐‘ โˆ’ ๐‘๐‘›) ๐‘“(๐‘ฅ) โˆ’ (๐‘™๐‘ โˆ’ ๐‘Ž๐‘›)๐‘”(๐‘ฅ)" +" (๐‘™๐‘ โˆ’ ๐‘Ž๐‘š) โ„Ž(๐‘ฅ)" " )/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘‘((๐‘š๐‘ โˆ’ ๐‘๐‘›) ๐‘“(๐‘ฅ))/๐‘‘๐‘ฅ โˆ’ ๐‘‘((๐‘™๐‘ โˆ’ ๐‘Ž๐‘›)๐‘”(๐‘ฅ))/๐‘‘๐‘ฅ + ๐‘‘((๐‘™๐‘ โˆ’ ๐‘Ž๐‘š) โ„Ž(๐‘ฅ))/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (๐‘š๐‘โˆ’๐‘๐‘›) ๐‘‘(๐‘“(๐‘ฅ))/๐‘‘๐‘ฅ โˆ’ (๐‘™๐‘โˆ’๐‘Ž๐‘›) ๐‘‘(๐‘”(๐‘ฅ))/๐‘‘๐‘ฅ + (๐‘™๐‘โˆ’๐‘Ž๐‘š) ๐‘‘(โ„Ž(๐‘ฅ))/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (๐‘š๐‘โˆ’๐‘๐‘›) ๐‘“โ€ฒ(๐‘ฅ)โˆ’(๐‘™๐‘โˆ’๐‘Ž๐‘›) ๐‘”โ€ฒ(๐‘ฅ) + (๐‘™๐‘โˆ’๐‘Ž๐‘š) โ„Žโ€ฒ(๐‘ฅ)" " Hence proved Misc 21 (Method 2) If ๐‘ฆ = |โ–ˆ( ๐‘“(๐‘ฅ) ๐‘”(๐‘ฅ) โ„Ž(๐‘ฅ)@๐‘™ ๐‘š ๐‘›@๐‘Ž ๐‘ ๐‘ )| , prove that ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = |โ–ˆ( ๐‘“โ€ฒ(๐‘ฅ) ๐‘”โ€ฒ(๐‘ฅ) โ„Žโ€ฒ(๐‘ฅ)@๐‘™ ๐‘š ๐‘›@๐‘Ž ๐‘ ๐‘ )| To Differentiate a determinant, We differentiate one row (or one column) at a time keeping others unchanged If ๐‘ฆ = |โ–ˆ( ๐‘“(๐‘ฅ) ๐‘”(๐‘ฅ) โ„Ž(๐‘ฅ)@๐‘™ ๐‘š ๐‘›@๐‘Ž ๐‘ ๐‘ )| ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = |โ–ˆ( ๐‘“โ€ฒ(๐‘ฅ) ๐‘”โ€ฒ(๐‘ฅ) โ„Žโ€ฒ(๐‘ฅ)@๐‘™ ๐‘š ๐‘›@๐‘Ž ๐‘ ๐‘ )| + |โ–ˆ(๐‘“(๐‘ฅ) ๐‘”(๐‘ฅ) โ„Ž(๐‘ฅ)@(๐‘™)^โ€ฒ (๐‘š)^โ€ฒ (๐‘›)^โ€ฒ@๐‘Ž ๐‘ ๐‘ )| + |โ–ˆ( ๐‘“(๐‘ฅ) ๐‘”(๐‘ฅ) โ„Ž(๐‘ฅ)@๐‘™ ๐‘š ๐‘›@(๐‘Ž)โ€ฒ (๐‘)โ€ฒ (๐‘)โ€ฒ )| ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = |โ–ˆ( ๐‘“โ€ฒ(๐‘ฅ) ๐‘”โ€ฒ(๐‘ฅ) โ„Žโ€ฒ(๐‘ฅ)@๐‘™ ๐‘š ๐‘›@๐‘Ž ๐‘ ๐‘ )| + |โ–ˆ(๐‘“(๐‘ฅ) ๐‘”(๐‘ฅ) โ„Ž(๐‘ฅ)@0 0 0 @๐‘Ž ๐‘ ๐‘ )| + |โ–ˆ( ๐‘“(๐‘ฅ) ๐‘”(๐‘ฅ) โ„Ž(๐‘ฅ)@๐‘™ ๐‘š ๐‘›@0 0 0 )| ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = |โ–ˆ( ๐‘“โ€ฒ(๐‘ฅ) ๐‘”โ€ฒ(๐‘ฅ) โ„Žโ€ฒ(๐‘ฅ)@๐‘™ ๐‘š ๐‘›@๐‘Ž ๐‘ ๐‘ )| + 0 + 0 ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = |โ–ˆ( ๐‘“โ€ฒ(๐‘ฅ) ๐‘”โ€ฒ(๐‘ฅ) โ„Žโ€ฒ(๐‘ฅ)@๐‘™ ๐‘š ๐‘›@๐‘Ž ๐‘ ๐‘ )| Hence proved. Using property If any one Row or column is 0 , then value of determinate is also 0 ๐‘ )| , prove that ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = |โ–ˆ( ๐‘“โ€ฒ(๐‘ฅ) ๐‘”โ€ฒ(๐‘ฅ) โ„Žโ€ฒ(๐‘ฅ)@๐‘™ ๐‘š ๐‘›@๐‘Ž ๐‘ ๐‘ )|

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo