Check sibling questions

 


Transcript

Misc 19 Using the fact that sin⁑(𝐴 + 𝐡)=sin⁑𝐴 cos⁑𝐡+cos⁑𝐴 sin⁑𝐡 and the differentiation, obtain the sum formula for cosines.Given sin⁑(𝐴 + 𝐡)=sin⁑𝐴 cos⁑𝐡+cos⁑𝐴 sin⁑𝐡 Consider A & B are function of π‘₯ Differentiating both side 𝑀.π‘Ÿ.𝑑.π‘₯. 𝑑(sin⁑(𝐴 + 𝐡) )/𝑑π‘₯ = 𝑑(sin⁑𝐴 cos⁑𝐡 + cos⁑𝐴 sin⁑𝐡)/𝑑π‘₯ 𝑑(sin⁑(𝐴 + 𝐡) )/𝑑π‘₯ = 𝑑(sin⁑𝐴 . cos⁑𝐡)/𝑑π‘₯ + 𝑑(cos⁑〖𝐴 γ€—. sin⁑𝐡)/𝑑π‘₯ cos (𝐴+𝐡) . 𝑑(𝐴 + 𝐡)/𝑑π‘₯ = 𝑑(sin⁑𝐴 . cos⁑𝐡)/𝑑π‘₯ + 𝑑(cos⁑〖𝐴 γ€—. sin⁑𝐡)/𝑑π‘₯ 𝒄𝒐𝒔 (𝑨+𝑩) . (𝒅𝑨/𝒅𝒙 + 𝒅𝑩/𝒅𝒙) = (𝑑(sin⁑𝐴 )/𝑑π‘₯. cos⁑𝐡" +" 𝑑(cos⁑𝐡 )/𝑑π‘₯ " " 𝑠𝑖𝑛⁑"A" ) + (𝑑(cos⁑𝐴 )/𝑑π‘₯. 𝑠𝑖𝑛⁑𝐡" +" 𝑑(sin⁑𝐡 )/𝑑π‘₯ ". " 𝑐"os A" ) = cos⁑𝐴.𝑑𝐴/𝑑π‘₯ ". cos B "βˆ’sin⁑𝐡.𝑑𝐡/𝑑π‘₯ " " sin⁑𝐴 βˆ’ sin⁑𝐴. 𝑑𝐴/𝑑π‘₯.sin⁑𝐡+cos⁑𝐡. 𝑑𝐡/𝑑π‘₯ ". " 𝑐"os A" = cos⁑𝐴.𝑑𝐴/𝑑π‘₯ ". cos B "βˆ’sin⁑𝐴 .𝑑𝐴/𝑑π‘₯ " " 𝑠𝑖𝑛⁑"B" βˆ’ sin⁑𝐡. 𝑑𝐡/𝑑π‘₯. 𝑠𝑖𝑛 𝐴⁑"+ cos B" . 𝑑𝐡/𝑑π‘₯ ". " 𝑐"os A" = 𝑑𝐴/𝑑π‘₯ (cos⁑𝐴 cosβ‘π΅βˆ’sin⁑𝐴 sin⁑𝐡 ) + 𝑑𝐡/𝑑π‘₯ (βˆ’sin⁑𝐡 sin⁑𝐴+cos⁑𝐡 cos⁑𝐴 ) = (cos⁑𝐴 cosβ‘π΅βˆ’sin⁑𝐴 sin⁑𝐡 ) (𝑑𝐴/𝑑π‘₯ + 𝑑𝐡/𝑑π‘₯) Thus, cos (𝐴+𝐡) . (𝑑𝐴/𝑑π‘₯ + 𝑑𝐡/𝑑π‘₯) = (cos⁑𝐴 cosβ‘π΅βˆ’sin⁑𝐴 sin⁑𝐡 ) (𝑑𝐴/𝑑π‘₯ + 𝑑𝐡/𝑑π‘₯) 𝒄𝒐𝒔" " (𝑨+𝑩) = 𝒄𝒐𝒔⁑𝑨 π’„π’π’”β‘π‘©βˆ’π’”π’Šπ’β‘π‘¨ π’”π’Šπ’β‘π‘© Hence proved

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo