Check sibling questions

   


Transcript

Misc 15 If (๐‘ฅ โ€“ ๐‘Ž)^2+ (๐‘ฆ โ€“ ๐‘)^2= ๐‘2, for some ๐‘ > 0, prove that ใ€–[1 + (๐‘‘๐‘ฆ/๐‘‘๐‘ฅ)^2 ]/((๐‘‘^2 ๐‘ฆ)/ใ€–๐‘‘๐‘ฅใ€—^2 )ใ€—^(3/2)is a constant independent of a and b.First we will calculate ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ (๐‘ฅ โ€“ ๐‘Ž)^2+ (๐‘ฆ โ€“ ๐‘)^2= ๐‘2 Differentiating ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ. ๐‘‘((๐‘ฅ โ€“ ๐‘Ž)^2+ (๐‘ฆ โ€“ ๐‘)^2 )/๐‘‘๐‘ฅ = ๐‘‘(๐‘^2 )/๐‘‘๐‘ฅ ๐‘‘((๐‘ฅ โ€“ ๐‘Ž)^2 )/๐‘‘๐‘ฅ +" " ๐‘‘((๐‘ฆ โ€“ ๐‘)^2 )/๐‘‘๐‘ฅ = 0 2(๐‘ฅ โ€“ ๐‘Ž). ๐‘‘(๐‘ฅ โˆ’ ๐‘Ž)/๐‘‘๐‘ฅ + 2 (๐‘ฆ โ€“ ๐‘). ๐‘‘(๐‘ฆ โˆ’ ๐‘)/๐‘‘๐‘ฅ = 0 2 (๐‘ฅ โ€“ ๐‘Ž) (1 โˆ’0) + 2(๐‘ฆ โ€“ ๐‘) . (๐‘‘๐‘ฆ/๐‘‘๐‘ฅ โˆ’0) = 0 2 (๐‘ฅ โ€“ ๐‘Ž) + 2(๐‘ฆ โ€“ ๐‘) . (๐‘‘๐‘ฆ/๐‘‘๐‘ฅ) = 0 2(๐‘ฆ โ€“ ๐‘) . ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = โˆ’2 (๐‘ฅ โ€“ ๐‘Ž) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (โˆ’2 (๐‘ฅ โ€“ ๐‘Ž))/2(๐‘ฆ โ€“ ๐‘) ๐’…๐’š/๐’…๐’™ = (โˆ’(๐’™ โˆ’ ๐’‚))/(๐’š โˆ’ ๐’ƒ) Again Differentiating ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ. ๐‘‘/๐‘‘๐‘ฅ (๐‘‘๐‘ฆ/๐‘‘๐‘ฅ) = ๐‘‘/๐‘‘๐‘ฅ ((โˆ’(๐‘ฅ โˆ’ ๐‘Ž))/(๐‘ฆ โˆ’ ๐‘)) (๐‘‘^2 ๐‘ฆ)/(๐‘‘๐‘ฅ^2 ) = โˆ’ ๐‘‘/๐‘‘๐‘ฅ ((๐‘ฅ โˆ’ ๐‘Ž)/(๐‘ฆ โˆ’ ๐‘)) (๐‘‘^2 ๐‘ฆ)/(๐‘‘๐‘ฅ^2 )= โˆ’ ((๐‘‘(๐‘ฅ โ€“ ๐‘Ž)/๐‘‘๐‘ฅ (๐‘ฆ โ€“ ๐‘) โˆ’ ๐‘‘(๐‘ฆ โ€“ ๐‘)/๐‘‘๐‘ฅ . (๐‘ฅ โ€“ ๐‘Ž))/(๐‘ฆ โˆ’ ๐‘)^2 ) (๐‘‘^2 ๐‘ฆ)/(๐‘‘๐‘ฅ^2 ) = โˆ’ (((1 โˆ’ 0) (๐‘ฆ โ€“ ๐‘) โˆ’ (๐‘‘๐‘ฆ/๐‘‘๐‘ฅ โˆ’ 0)(๐‘ฅ โ€“ ๐‘Ž))/(๐‘ฆ โˆ’ ๐‘)^2 ) Using Quotient rule As (๐‘ข/๐‘ฃ)โ€ฒ = (๐‘ข^โ€ฒ ๐‘ฃ โˆ’ ๐‘ฃ^โ€ฒ ๐‘ข)/๐‘ฃ^2 where u = x โˆ’ ๐‘Ž & v = y โˆ’ b (๐‘‘^2 ๐‘ฆ)/(๐‘‘๐‘ฅ^2 ) = โˆ’ (((๐‘ฆ โ€“ ๐‘) โˆ’ (๐‘‘๐‘ฆ/๐‘‘๐‘ฅ)(๐‘ฅ โ€“ ๐‘Ž))/(๐‘ฆ โˆ’ ๐‘)^2 ) (๐‘‘^2 ๐‘ฆ)/(๐‘‘๐‘ฅ^2 ) = โˆ’ (((๐‘ฆ โ€“ ๐‘) โˆ’ (โˆ’ (๐‘ฅ โ€“ ๐‘Ž))/((๐‘ฆ โ€“ ๐‘) ) (๐‘ฅ โ€“ ๐‘Ž))/(๐‘ฆ โˆ’ ๐‘)^2 ) (๐‘‘^2 ๐‘ฆ)/(๐‘‘๐‘ฅ^2 )= โˆ’ (((๐‘ฆ โ€“ ๐‘)^2 + (๐‘ฅ โ€“ ๐‘Ž)^2)/((๐‘ฆ โˆ’ ๐‘)^2 (๐‘ฆ โˆ’ ๐‘) )) (๐’…^๐Ÿ ๐’š)/(๐’…๐’™^๐Ÿ )= (โˆ’๐’„^๐Ÿ)/(๐’š โˆ’ ๐’ƒ)^๐Ÿ‘ Now, finding value of ใ€–[๐Ÿ+ (๐’…๐’š/๐’…๐’™)^๐Ÿ ]/((๐’…^๐Ÿ ๐’š)/ใ€–๐’…๐’™ใ€—^๐Ÿ )ใ€—^(๐Ÿ‘/๐Ÿ) (Given (๐‘ฅ โ€“ ๐‘Ž)^2+ (๐‘ฆ โ€“ ๐‘)^2= ๐‘2) ใ€–[๐Ÿ+ (๐’…๐’š/๐’…๐’™)^๐Ÿ ]/((๐’…^๐Ÿ ๐’š)/ใ€–๐’…๐’™ใ€—^๐Ÿ )ใ€—^(๐Ÿ‘/๐Ÿ) Putting values = ใ€–[1+ ((โˆ’(๐‘ฅ โ€“ ๐‘Ž))/(๐‘ฆ โ€“ ๐‘))^2 ]/((โˆ’๐‘^2)/(๐‘ฆ โˆ’ ๐‘)^3 )ใ€—^(3/2) = โˆ’ ใ€–[((๐‘ฆ โˆ’ ๐‘)^2 + (๐‘ฅ โ€“ ๐‘Ž)^2)/(๐‘ฆ โ€“ ๐‘)^2 ]/(๐‘^2/(๐‘ฆ โˆ’ ๐‘)^3 )ใ€—^(3/2) = โˆ’ ใ€–[๐‘^2/(๐‘ฆ โ€“ ๐‘)^2 ]/(๐‘^2/(๐‘ฆ โˆ’ ๐‘)^3 )ใ€—^(3/2) = โˆ’ [๐‘^2/(๐‘ฆ โ€“ ๐‘)^2 ]^(3/2) ร— (๐‘ฆ โˆ’ ๐‘)^3/๐‘^2 = โˆ’ (๐‘/(๐‘ฆ โ€“ ๐‘))^(2 ร— 3/2) ร— (๐‘ฆ โˆ’ ๐‘)^3/๐‘^2 "= โˆ’" (๐‘/(๐‘ฆ โ€“ ๐‘))^3 " ร— " (๐‘ฆ โˆ’ ๐‘)^3/๐‘^2 "= โˆ’" ๐‘^3/๐‘^2 ร— (๐‘ฆ โˆ’ ๐‘)^3/(๐‘ฆ โˆ’ ๐‘)^3 = โˆ’๐’„ = Constant Which is constant independent of a & b Hence proved

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo